Not enough data to create a plot.
Try a different view from the menu above.
Chertkov, Michael
Minimum Weight Perfect Matching via Blossom Belief Propagation
Ahn, Sung-Soo, Park, Sejun, Chertkov, Michael, Shin, Jinwoo
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices. Our scheme guarantees termination in O(n^2) of BP runs, where n is the number of vertices in the original graph. In essence, the Blossom-BP offers a distributed version of the celebrated Edmonds' Blossom algorithm by jumping at once over many sub-steps with a single BP. Moreover, our result provides an interpretation of the Edmonds' algorithm as a sequence of LPs.
Minimum Weight Perfect Matching via Blossom Belief Propagation
Ahn, Sungsoo, Park, Sejun, Chertkov, Michael, Shin, Jinwoo
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices. Our scheme guarantees termination in O(n^2) of BP runs, where n is the number of vertices in the original graph. In essence, the Blossom-BP offers a distributed version of the celebrated Edmonds' Blossom algorithm by jumping at once over many sub-steps with a single BP. Moreover, our result provides an interpretation of the Edmonds' algorithm as a sequence of LPs.
Learning Planar Ising Models
Johnson, Jason K., Oyen, Diane, Chertkov, Michael, Netrapalli, Praneeth
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We demonstrate our method in simulations and for the application of modeling senate voting records.
Approximate inference on planar graphs using Loop Calculus and Belief Propagation
Gomez, Vicenc, Kappen, Hilbert, Chertkov, Michael
We introduce novel results for approximate inference on planar graphical models using the loop calculus framework. The loop calculus (Chertkov and Chernyak, 2006b) allows to express the exact partition function Z of a graphical model as a finite sum of terms that can be evaluated once the belief propagation (BP) solution is known. In general, full summation over all correction terms is intractable. We develop an algorithm for the approach presented in Chertkov et al. (2008) which represents an efficient truncation scheme on planar graphs and a new representation of the series in terms of Pfaffians of matrices. We analyze in detail both the loop series and the Pfaffian series for models with binary variables and pairwise interactions, and show that the first term of the Pfaffian series can provide very accurate approximations. The algorithm outperforms previous truncation schemes of the loop series and is competitive with other state-of-the-art methods for approximate inference.
Learning Planar Ising Models
Johnson, Jason K., Netrapalli, Praneeth, Chertkov, Michael
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We demonstrate our method in some simulations and for the application of modeling senate voting records.
Belief Propagation and Beyond for Particle Tracking
Chertkov, Michael, Kroc, Lukas, Vergassola, Massimo
We describe a novel approach to statistical learning from particles tracked while moving in a random environment. The problem consists in inferring properties of the environment from recorded snapshots. We consider here the case of a fluid seeded with identical passive particles that diffuse and are advected by a flow. Our approach rests on efficient algorithms to estimate the weighted number of possible matchings among particles in two consecutive snapshots, the partition function of the underlying graphical model. The partition function is then maximized over the model parameters, namely diffusivity and velocity gradient. A Belief Propagation (BP) scheme is the backbone of our algorithm, providing accurate results for the flow parameters we want to learn. The BP estimate is additionally improved by incorporating Loop Series (LS) contributions. For the weighted matching problem, LS is compactly expressed as a Cauchy integral, accurately estimated by a saddle point approximation. Numerical experiments show that the quality of our improved BP algorithm is comparable to the one of a fully polynomial randomized approximation scheme, based on the Markov Chain Monte Carlo (MCMC) method, while the BP-based scheme is substantially faster than the MCMC scheme.
Belief Propagation and Loop Series on Planar Graphs
Chertkov, Michael, Chernyak, Vladimir Y., Teodorescu, Razvan
We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of [1, 2] is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation [3], to evaluating the partition function of the dimer matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn [4]. This allows to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed.