Plotting

 Cheng, Xize


OmniChat: Enhancing Spoken Dialogue Systems with Scalable Synthetic Data for Diverse Scenarios

arXiv.org Artificial Intelligence

With the rapid development of large language models, researchers have created increasingly advanced spoken dialogue systems that can naturally converse with humans. However, these systems still struggle to handle the full complexity of real-world conversations, including audio events, musical contexts, and emotional expressions, mainly because current dialogue datasets are constrained in both scale and scenario diversity. In this paper, we propose leveraging synthetic data to enhance the dialogue models across diverse scenarios. We introduce ShareChatX, the first comprehensive, large-scale dataset for spoken dialogue that spans diverse scenarios. Based on this dataset, we introduce OmniChat, a multi-turn dialogue system with a heterogeneous feature fusion module, designed to optimize feature selection in different dialogue contexts. In addition, we explored critical aspects of training dialogue systems using synthetic data. Through comprehensive experimentation, we determined the ideal balance between synthetic and real data, achieving state-of-the-art results on the real-world dialogue dataset DailyTalk. We also highlight the crucial importance of synthetic data in tackling diverse, complex dialogue scenarios, especially those involving audio and music. For more details, please visit our demo page at \url{https://sharechatx.github.io/}.


A Wander Through the Multimodal Landscape: Efficient Transfer Learning via Low-rank Sequence Multimodal Adapter

arXiv.org Artificial Intelligence

Efficient transfer learning methods such as adapter-based methods have shown great success in unimodal models and vision-language models. However, existing methods have two main challenges in fine-tuning multimodal models. Firstly, they are designed for vision-language tasks and fail to extend to situations where there are more than two modalities. Secondly, they exhibit limited exploitation of interactions between modalities and lack efficiency. To address these issues, in this paper, we propose the loW-rank sequence multimodal adapter (Wander). We first use the outer product to fuse the information from different modalities in an element-wise way effectively. For efficiency, we use CP decomposition to factorize tensors into rank-one components and achieve substantial parameter reduction. Furthermore, we implement a token-level low-rank decomposition to extract more fine-grained features and sequence relationships between modalities. With these designs, Wander enables token-level interactions between sequences of different modalities in a parameter-efficient way. We conduct extensive experiments on datasets with different numbers of modalities, where Wander outperforms state-of-the-art efficient transfer learning methods consistently. The results fully demonstrate the effectiveness, efficiency and universality of Wander.


WavChat: A Survey of Spoken Dialogue Models

arXiv.org Artificial Intelligence

Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.


ControlSpeech: Towards Simultaneous Zero-shot Speaker Cloning and Zero-shot Language Style Control With Decoupled Codec

arXiv.org Artificial Intelligence

In this paper, we present ControlSpeech, a text-to-speech (TTS) system capable of fully cloning the speaker's voice and enabling arbitrary control and adjustment of speaking style, merely based on a few seconds of audio prompt and a simple textual style description prompt. Prior zero-shot TTS models and controllable TTS models either could only mimic the speaker's voice without further control and adjustment capabilities or were unrelated to speaker-specific voice generation. Therefore, ControlSpeech focuses on a more challenging new task--a TTS system with controllable timbre, content, and style at the same time. ControlSpeech takes speech prompts, content prompts, and style prompts as inputs and utilizes bidirectional attention and mask-based parallel decoding to capture corresponding codec representations in a discrete decoupling codec space. Moreover, we discovered the issue of text style controllability in a many-to-many mapping fashion and proposed the Style Mixture Semantic Density (SMSD) model to resolve this problem. SMSD module which is based on Gaussian mixture density networks, is designed to enhance the fine-grained partitioning and sampling capabilities of style semantic information and generate speech with more diverse styles. In terms of experiments, we make available a controllable model toolkit called ControlToolkit with a new style controllable dataset, some replicated baseline models and propose new metrics to evaluate both the control capability and the quality of generated audio in ControlSpeech. The relevant ablation studies validate the necessity of each component in ControlSpeech is necessary. We hope that ControlSpeech can establish the next foundation paradigm of controllable speech synthesis.


Text-to-Song: Towards Controllable Music Generation Incorporating Vocals and Accompaniment

arXiv.org Artificial Intelligence

A song is a combination of singing voice and accompaniment. However, existing works focus on singing voice synthesis and music generation independently. Little attention was paid to explore song synthesis. In this work, we propose a novel task called text-to-song synthesis which incorporating both vocals and accompaniments generation. We develop Melodist, a two-stage text-to-song method that consists of singing voice synthesis (SVS) and vocal-to-accompaniment (V2A) synthesis. Melodist leverages tri-tower contrastive pretraining to learn more effective text representation for controllable V2A synthesis. A Chinese song dataset mined from a music website is built up to alleviate data scarcity for our research. The evaluation results on our dataset demonstrate that Melodist can synthesize songs with comparable quality and style consistency. Audio samples can be found in https://text2songMelodist.github.io/Sample/.


FreeBind: Free Lunch in Unified Multimodal Space via Knowledge Fusion

arXiv.org Artificial Intelligence

Unified multi-model representation spaces are the foundation of multimodal understanding and generation. However, the billions of model parameters and catastrophic forgetting problems make it challenging to further enhance pre-trained unified spaces. In this work, we propose FreeBind, an idea that treats multimodal representation spaces as basic units, and freely augments pre-trained unified space by integrating knowledge from extra expert spaces via "space bonds". Specifically, we introduce two kinds of basic space bonds: 1) Space Displacement Bond and 2) Space Combination Bond. Based on these basic bonds, we design Complex Sequential & Parallel Bonds to effectively integrate multiple spaces simultaneously. Benefiting from the modularization concept, we further propose a coarse-to-fine customized inference strategy to flexibly adjust the enhanced unified space for different purposes. Experimentally, we bind ImageBind with extra image-text and audio-text expert spaces, resulting in three main variants: ImageBind++, InternVL_IB, and InternVL_IB++. These resulting spaces outperform ImageBind on 5 audio-image-text downstream tasks across 9 datasets. Moreover, via customized inference, it even surpasses the advanced audio-text and image-text expert spaces.


TransFace: Unit-Based Audio-Visual Speech Synthesizer for Talking Head Translation

arXiv.org Artificial Intelligence

Direct speech-to-speech translation achieves high-quality results through the introduction of discrete units obtained from self-supervised learning. This approach circumvents delays and cascading errors associated with model cascading. However, talking head translation, converting audio-visual speech (i.e., talking head video) from one language into another, still confronts several challenges compared to audio speech: (1) Existing methods invariably rely on cascading, synthesizing via both audio and text, resulting in delays and cascading errors. If the generated translation exceeds the length of the original speech, the video sequence needs to be supplemented by repeating frames, leading to jarring video transitions. In this work, we propose a model for talking head translation, TransFace, which can directly translate audio-visual speech into audio-visual speech in other languages. It consists of a speech-to-unit translation model to convert audio speech into discrete units and a unit-based audio-visual speech synthesizer, Unit2Lip, to re-synthesize synchronized audio-visual speech from discrete units in parallel. Furthermore, we introduce a Bounded Duration Predictor, ensuring isometric talking head translation and preventing duplicate reference frames. Experiments demonstrate that our proposed Unit2Lip model significantly improves synchronization (1.601 and 0.982 on LSE-C for the original and generated audio speech, respectively) and boosts inference speed by a factor of 4.35 on LRS2. Additionally, TransFace achieves impressive BLEU scores of 61.93 and 47.55 for Es-En and Fr-En on LRS3-T and 100% isochronous translations. The samples are available at https://transface-demo.github.io/


Connecting Multi-modal Contrastive Representations

arXiv.org Artificial Intelligence

Multi-modal Contrastive Representation learning aims to encode different modalities into a semantically aligned shared space. This paradigm shows remarkable generalization ability on numerous downstream tasks across various modalities. However, the reliance on massive high-quality data pairs limits its further development on more modalities. This paper proposes a novel training-efficient method for learning MCR without paired data called Connecting Multi-modal Contrastive Representations (C-MCR). Specifically, given two existing MCRs pre-trained on (A, B) and (B, C) modality pairs, we project them to a new space and use the data from the overlapping modality B to aligning the two MCRs in the new space. Meanwhile, since the modality pairs (A, B) and (B, C) are already aligned within each MCR, the connection learned by overlapping modality can also be transferred to non-overlapping modality pair (A, C). To unleash the potential of C-MCR, we further introduce a semantic-enhanced inter- and intra-MCR connection method. We first enhance the semantic consistency and completion of embeddings across different modalities for more robust alignment. Then we utilize the inter-MCR alignment to establish the connection, and employ the intra-MCR alignment to better maintain the connection for inputs from non-overlapping modalities. To demonstrate the effectiveness of C-MCR, we connect CLIP and CLAP via texts to derive audio-visual representations, and integrate CLIP and ULIP via images for 3D-language representations. Remarkably, without using any paired data, C-MCR for audio-visual achieves state-of-the-art performance on audio-image retrieval, audio-visual source localization, and counterfactual audio-image recognition tasks. Furthermore, C-MCR for 3D-language also attains advanced zero-shot 3D point cloud classification accuracy on ModelNet40.


OpenSR: Open-Modality Speech Recognition via Maintaining Multi-Modality Alignment

arXiv.org Artificial Intelligence

Speech Recognition builds a bridge between the multimedia streaming (audio-only, visual-only or audio-visual) and the corresponding text transcription. However, when training the specific model of new domain, it often gets stuck in the lack of new-domain utterances, especially the labeled visual utterances. To break through this restriction, we attempt to achieve zero-shot modality transfer by maintaining the multi-modality alignment in phoneme space learned with unlabeled multimedia utterances in the high resource domain during the pre-training \cite{shi2022learning}, and propose a training system Open-modality Speech Recognition (\textbf{OpenSR}) that enables the models trained on a single modality (e.g., audio-only) applicable to more modalities (e.g., visual-only and audio-visual). Furthermore, we employ a cluster-based prompt tuning strategy to handle the domain shift for the scenarios with only common words in the new domain utterances. We demonstrate that OpenSR enables modality transfer from one to any in three different settings (zero-, few- and full-shot), and achieves highly competitive zero-shot performance compared to the existing few-shot and full-shot lip-reading methods. To the best of our knowledge, OpenSR achieves the state-of-the-art performance of word error rate in LRS2 on audio-visual speech recognition and lip-reading with 2.7\% and 25.0\%, respectively. The code and demo are available at https://github.com/Exgc/OpenSR.


Diffusion Denoising Process for Perceptron Bias in Out-of-distribution Detection

arXiv.org Artificial Intelligence

Out-of-distribution (OOD) detection is a crucial task for ensuring the reliability and safety of deep learning. Currently, discriminator models outperform other methods in this regard. However, the feature extraction process used by discriminator models suffers from the loss of critical information, leaving room for bad cases and malicious attacks. In this paper, we introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem. To address this issue, we propose a novel framework that combines discriminator and generation models and integrates diffusion models (DMs) into OOD detection. We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric interpolation, which is well-suited to enhance the input and mitigate the overconfidence problem. The discriminator model features of OOD data exhibit sharp changes under DDP, and we utilize the norm of this change as the indicator score. Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches. Notably, for the challenging InD ImageNet and OOD species datasets, our method achieves an AUROC of 85.7, surpassing the previous SOTA method's score of 77.4.