Goto

Collaborating Authors

 Chen, Zhuo


Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs

arXiv.org Artificial Intelligence

The advent of Large Language Models (LLMs) has significantly transformed the AI landscape, enhancing machine learning and AI capabilities. Factuality issue is a critical concern for LLMs, as they may generate factually incorrect responses. In this paper, we propose GraphEval to evaluate an LLM's performance using a substantially large test dataset. Specifically, the test dataset is retrieved from a large knowledge graph with more than 10 million facts without expensive human efforts. Unlike conventional methods that evaluate LLMs based on generated responses, GraphEval streamlines the evaluation process by creating a judge model to estimate the correctness of the answers given by the LLM. Our experiments demonstrate that the judge model's factuality assessment aligns closely with the correctness of the LLM's generated outputs, while also substantially reducing evaluation costs. Besides, our findings offer valuable insights into LLM performance across different metrics and highlight the potential for future improvements in ensuring the factual integrity of LLM outputs.


NativE: Multi-modal Knowledge Graph Completion in the Wild

arXiv.org Artificial Intelligence

Multi-modal knowledge graph completion (MMKGC) aims to automatically discover the unobserved factual knowledge from a given multi-modal knowledge graph by collaboratively modeling the triple structure and multi-modal information from entities. However, real-world MMKGs present challenges due to their diverse and imbalanced nature, which means that the modality information can span various types (e.g., image, text, numeric, audio, video) but its distribution among entities is uneven, leading to missing modalities for certain entities. Existing works usually focus on common modalities like image and text while neglecting the imbalanced distribution phenomenon of modal information. To address these issues, we propose a comprehensive framework NativE to achieve MMKGC in the wild. NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities and employs a collaborative modality adversarial training framework to augment the imbalanced modality information. We construct a new benchmark called WildKGC with five datasets to evaluate our method. The empirical results compared with 21 recent baselines confirm the superiority of our method, consistently achieving state-of-the-art performance across different datasets and various scenarios while keeping efficient and generalizable. Our code and data are released at https://github.com/zjukg/NATIVE


The Power of Noise: Toward a Unified Multi-modal Knowledge Graph Representation Framework

arXiv.org Artificial Intelligence

The advancement of Multi-modal Pre-training highlights the necessity for a robust Multi-Modal Knowledge Graph (MMKG) representation learning framework. This framework is crucial for integrating structured knowledge into multi-modal Large Language Models (LLMs) at scale, aiming to alleviate issues like knowledge misconceptions and multi-modal hallucinations. In this work, to evaluate models' ability to accurately embed entities within MMKGs, we focus on two widely researched tasks: Multi-modal Knowledge Graph Completion (MKGC) and Multi-modal Entity Alignment (MMEA). Building on this foundation, we propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking for the robust integration of multi-modal entity features in KGs. By incorporating specific training objectives for both MKGC and MMEA, our approach achieves SOTA performance across a total of ten datasets (three for MKGC and seven for MEMA), demonstrating its robustness and versatility. Besides, SNAG can not only function as a standalone model but also enhance other existing methods, providing stable performance improvements. Our code and data are available at: https://github.com/zjukg/SNAG.


ASGEA: Exploiting Logic Rules from Align-Subgraphs for Entity Alignment

arXiv.org Artificial Intelligence

Entity alignment (EA) aims to identify entities across different knowledge graphs that represent the same real-world objects. Recent embedding-based EA methods have achieved state-of-the-art performance in EA yet faced interpretability challenges as they purely rely on the embedding distance and neglect the logic rules behind a pair of aligned entities. In this paper, we propose the Align-Subgraph Entity Alignment (ASGEA) framework to exploit logic rules from Align-Subgraphs. ASGEA uses anchor links as bridges to construct Align-Subgraphs and spreads along the paths across KGs, which distinguishes it from the embedding-based methods. Furthermore, we design an interpretable Path-based Graph Neural Network, ASGNN, to effectively identify and integrate the logic rules across KGs. We also introduce a node-level multi-modal attention mechanism coupled with multi-modal enriched anchors to augment the Align-Subgraph. Our experimental results demonstrate the superior performance of ASGEA over the existing embedding-based methods in both EA and Multi-Modal EA (MMEA) tasks.


DRAK: Unlocking Molecular Insights with Domain-Specific Retrieval-Augmented Knowledge in LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) encounter challenges with the unique syntax of specific domains, such as biomolecules. Existing fine-tuning or modality alignment techniques struggle to bridge the domain knowledge gap and understand complex molecular data, limiting LLMs' progress in specialized fields. To overcome these limitations, we propose an expandable and adaptable non-parametric knowledge injection framework named Domain-specific Retrieval-Augmented Knowledge (DRAK), aimed at enhancing reasoning capabilities in specific domains. Utilizing knowledge-aware prompts and gold label-induced reasoning, DRAK has developed profound expertise in the molecular domain and the capability to handle a broad spectrum of analysis tasks. We evaluated two distinct forms of DRAK variants, proving that DRAK exceeds previous benchmarks on six molecular tasks within the Mol-Instructions dataset. Extensive experiments have underscored DRAK's formidable performance and its potential to unlock molecular insights, offering a unified paradigm for LLMs to tackle knowledge-intensive tasks in specific domains. Our code will be available soon.


Unleashing the Power of Imbalanced Modality Information for Multi-modal Knowledge Graph Completion

arXiv.org Artificial Intelligence

Multi-modal knowledge graph completion (MMKGC) aims to predict the missing triples in the multi-modal knowledge graphs by incorporating structural, visual, and textual information of entities into the discriminant models. The information from different modalities will work together to measure the triple plausibility. Existing MMKGC methods overlook the imbalance problem of modality information among entities, resulting in inadequate modal fusion and inefficient utilization of the raw modality information. To address the mentioned problems, we propose Adaptive Multi-modal Fusion and Modality Adversarial Training (AdaMF-MAT) to unleash the power of imbalanced modality information for MMKGC. AdaMF-MAT achieves multi-modal fusion with adaptive modality weights and further generates adversarial samples by modality-adversarial training to enhance the imbalanced modality information. Our approach is a co-design of the MMKGC model and training strategy which can outperform 19 recent MMKGC methods and achieve new state-of-the-art results on three public MMKGC benchmarks.


ChatCell: Facilitating Single-Cell Analysis with Natural Language

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) rapidly evolve, their influence in science is becoming increasingly prominent. The emerging capabilities of LLMs in task generalization and free-form dialogue can significantly advance fields like chemistry and biology. However, the field of single-cell biology, which forms the foundational building blocks of living organisms, still faces several challenges. High knowledge barriers and limited scalability in current methods restrict the full exploitation of LLMs in mastering single-cell data, impeding direct accessibility and rapid iteration. To this end, we introduce ChatCell, which signifies a paradigm shift by facilitating single-cell analysis with natural language. Leveraging vocabulary adaptation and unified sequence generation, ChatCell has acquired profound expertise in single-cell biology and the capability to accommodate a diverse range of analysis tasks. Extensive experiments further demonstrate ChatCell's robust performance and potential to deepen single-cell insights, paving the way for more accessible and intuitive exploration in this pivotal field. Our project homepage is available at https://zjunlp.github.io/project/ChatCell.


Power Transformer Fault Prediction Based on Knowledge Graphs

arXiv.org Artificial Intelligence

In this paper, we address the challenge of learning with limited fault data for power transformers. Traditional operation and maintenance tools lack effective predictive capabilities for potential faults. The scarcity of extensive fault data makes it difficult to apply machine learning techniques effectively. To solve this problem, we propose a novel approach that leverages the knowledge graph (KG) technology in combination with gradient boosting decision trees (GBDT). This method is designed to efficiently learn from a small set of high-dimensional data, integrating various factors influencing transformer faults and historical operational data. Our approach enables accurate safe state assessments and fault analyses of power transformers despite the limited fault characteristic data. Experimental results demonstrate that this method outperforms other learning approaches in prediction accuracy, such as artificial neural networks (ANN) and logistic regression (LR). Furthermore, it offers significant improvements in progressiveness, practicality, and potential for widespread application.


Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

arXiv.org Artificial Intelligence

Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.


Rethinking the Soft Conflict Pseudo Boolean Constraint on MaxSAT Local Search Solvers

arXiv.org Artificial Intelligence

MaxSAT is an optimization version of the famous NP-complete Satisfiability problem (SAT). Algorithms for MaxSAT mainly include complete solvers and local search incomplete solvers. In many complete solvers, once a better solution is found, a Soft conflict Pseudo Boolean (SPB) constraint will be generated to enforce the algorithm to find better solutions. In many local search algorithms, clause weighting is a key technique for effectively guiding the search directions. In this paper, we propose to transfer the SPB constraint into the clause weighting system of the local search method, leading the algorithm to better solutions. We further propose an adaptive clause weighting strategy that breaks the tradition of using constant values to adjust clause weights. Based on the above methods, we propose a new local search algorithm called SPB-MaxSAT that provides new perspectives for clause weighting on MaxSAT local search solvers. Extensive experiments demonstrate the excellent performance of the proposed methods.