Chen, Zhenghao
Sparse Filtering
Ngiam, Jiquan, Chen, Zhenghao, Bhaskar, Sonia A., Koh, Pang W., Ng, Andrew Y.
Unsupervised feature learning has been shown to be effective at learning representations that perform well on image, video and audio classification. However, many existing feature learning algorithms are hard to use and require extensive hyperparameter tuning. In this work, we present sparse filtering, a simple new algorithm which is efficient and only has one hyperparameter, the number of features to learn. In contrast to most other feature learning methods, sparse filtering does not explicitly attempt to construct a model of the data distribution. Instead, it optimizes a simple cost function -- the sparsity of L2-normalized features -- which can easily be implemented in a few lines of MATLAB code. Sparse filtering scales gracefully to handle high-dimensional inputs, and can also be used to learn meaningful features in additional layers with greedy layer-wise stacking. We evaluate sparse filtering on natural images, object classification (STL-10), and phone classification (TIMIT), and show that our method works well on a range of different modalities.
Tiled convolutional neural networks
Ngiam, Jiquan, Chen, Zhenghao, Chia, Daniel, Koh, Pang W., Le, Quoc V., Ng, Andrew Y.
Convolutional neural networks (CNNs) have been successfully applied to many tasks such as digit and object recognition. Using convolutional (tied) weights significantly reduces the number of parameters that have to be learned, and also allows translational invariance to be hard-coded into the architecture. In this paper, we consider the problem of learning invariances, rather than relying on hard-coding. We propose tiled convolution neural networks (Tiled CNNs), which use a regular “tiled” pattern of tied weights that does not require that adjacent hidden units share identical weights, but instead requires only that hidden units k steps away from each other to have tied weights. By pooling over neighboring units, this architecture is able to learn complex invariances (such as scale and rotational invariance) beyond translational invariance. Further, it also enjoys much of CNNs’ advantage of having a relatively small number of learned parameters (such as ease of learning and greater scalability). We provide an efficient learning algorithm for Tiled CNNs based on Topographic ICA, and show that learning complex invariant features allows us to achieve highly competitive results for both the NORB and CIFAR-10 datasets.