Chen, Yuhao
Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge
Wong, Alexander, Wu, Yifan, Abbasi, Saad, Nair, Saeejith, Chen, Yuhao, Shafiee, Mohammad Javad
Multi-task learning has shown considerable promise for improving the performance of deep learning-driven vision systems for the purpose of robotic grasping. However, high architectural and computational complexity can result in poor suitability for deployment on embedded devices that are typically leveraged in robotic arms for real-world manufacturing and warehouse environments. As such, the design of highly efficient multi-task deep neural network architectures tailored for computer vision tasks for robotic grasping on the edge is highly desired for widespread adoption in manufacturing environments. Motivated by this, we propose Fast GraspNeXt, a fast self-attention neural network architecture tailored for embedded multi-task learning in computer vision tasks for robotic grasping. To build Fast GraspNeXt, we leverage a generative network architecture search strategy with a set of architectural constraints customized to achieve a strong balance between multi-task learning performance and embedded inference efficiency. Experimental results on the MetaGraspNet benchmark dataset show that the Fast GraspNeXt network design achieves the highest performance (average precision (AP), accuracy, and mean squared error (MSE)) across multiple computer vision tasks when compared to other efficient multi-task network architecture designs, while having only 17.8M parameters (about >5x smaller), 259 GFLOPs (as much as >5x lower) and as much as >3.15x faster on a NVIDIA Jetson TX2 embedded processor.
ShapeShift: Superquadric-based Object Pose Estimation for Robotic Grasping
Zeng, E. Zhixuan, Chen, Yuhao, Wong, Alexander
Object pose estimation is a critical task in robotics for precise object manipulation. However, current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories. Direct pose predictions also provide limited information for robotic grasping without referencing the 3D model. Keypoint-based methods offer intrinsic descriptiveness without relying on an exact 3D model, but they may lack consistency and accuracy. To address these challenges, this paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object. The proposed framework offers intrinsic descriptiveness and the ability to generalize to arbitrary geometric shapes beyond the training set.