Plotting

 Chen, Yezeng


KALE-LM: Unleash The Power Of AI For Science Via Knowledge And Logic Enhanced Large Model

arXiv.org Artificial Intelligence

In recent years, the rapid development of artificial intelligence (AI) technology has enabled it to achieve, and in some cases surpass, top human performance in various high-intelligence tasks. These include recognition in speech [1], facial [2], and image [3], games such as Go [4], StarCraft [5], and Dota2 [6], as well as tasks related to text [7], image [8], and video generation, machine translation [9], knowledge-based question answering [10], debates, and solving advanced mathematical problems [11]. Science is one of the most important fields for the application of AI. As the crown jewel of human civilization and the cornerstone of various industries, science is a core driver of human progress, and its development can significantly accelerate and even revolutionize many fields. Historically, there have been three major research paradigms in science: the first paradigm, experiment, which emerged from Newtonian empiricism; the second paradigm, theory, born from Einstein's rationalism; and the third paradigm, simulation/computation, which arose from the third industrial revolution, the computation and information revolution.


An Empirical Study of Data Ability Boundary in LLMs' Math Reasoning

arXiv.org Artificial Intelligence

Large language models (LLMs) are displaying emergent abilities for math reasoning tasks,and there is a growing attention on enhancing the ability of open-source LLMs through supervised fine-tuning (SFT).In this paper, we aim to explore a general data strategy for supervised data to help optimize and expand math reasoning ability.Firstly, we determine the ability boundary of reasoning paths augmentation by identifying these paths' minimal optimal set.Secondly, we validate that different abilities of the model can be cumulatively enhanced by Mix of Minimal Optimal Sets of corresponding types of data, while our models MMOS achieve SOTA performance on series base models under much lower construction costs.Besides, we point out GSM-HARD is not really hard and today's LLMs no longer lack numerical robustness.Also, we provide an Auto Problem Generator for robustness testing and educational applications.Our code and data are publicly available at https://github.com/cyzhh/MMOS.


Brain-Inspired Two-Stage Approach: Enhancing Mathematical Reasoning by Imitating Human Thought Processes

arXiv.org Artificial Intelligence

Although large language models demonstrate emergent abilities in solving math word problems, there is a challenging task in complex multi-step mathematical reasoning tasks. To improve model performance on mathematical reasoning tasks, previous work has conducted supervised fine-tuning on open-source models by improving the quality and quantity of data. In this paper, we propose a novel approach, named Brain, to imitate human thought processes to enhance mathematical reasoning abilities, using the Frontal Lobe Model to generate plans, and then employing the Parietal Lobe Model to generate code and execute to obtain answers. First, we achieve SOTA performance in comparison with Code LLaMA 7B based models through this method. Secondly, we find that plans can be explicitly extracted from natural language, code, or formal language. Our code and data are publicly available at https://github.com/cyzhh/Brain.


Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset

arXiv.org Artificial Intelligence

Mathematical understanding and reasoning are crucial tasks for assessing the capabilities of artificial intelligence (AI). However, existing benchmarks either require just a few steps of reasoning, or only contain a small amount of data in one specific topic, making it hard to analyse AI's behaviour with reference to different problems within a specific topic in detail. In this work, we propose Conic10K, a challenging math problem dataset on conic sections in Chinese senior high school education. Our dataset contains various problems with different reasoning depths, while only the knowledge from conic sections is required. Since the dataset only involves a narrow range of knowledge, it is easy to separately analyse the knowledge a model possesses and the reasoning ability it has. For each problem, we provide a high-quality formal representation, the reasoning steps, and the final solution. Experiments show that existing large language models, including GPT-4, exhibit weak performance on complex reasoning. We hope that our findings could inspire more advanced techniques for precise natural language understanding and reasoning. Our dataset and codes are available at https://github.com/whyNLP/Conic10K.