Plotting

 Chen, Yanan


Weaker LLMs' Opinions Also Matter: Mixture of Opinions Enhances LLM's Mathematical Reasoning

arXiv.org Artificial Intelligence

Recent advances in Large Language Models (LLMs) have raised interest in their formal reasoning capabilities, particularly in mathematics. While closed LLMs like GPT-4 perform well on mathematical benchmarks, e.g., GSM8K, it remains unclear whether small to medium-sized open LLMs can achieve similar performance, questioning their reliability. To close this gap, we propose a post-training approach leveraging a mixture of opinions (MoO) from weaker ancillary LLMs to enhance a (relatively) stronger LLM's reasoning. For that, each post-training sample is augmented with Chain-of-Thought (CoT) reasoning steps and answers from ancillary LLMs, enabling the main LLM to learn from diverse perspectives. We compare MoO with standard supervised fine-tuning (SFT), few-shot prompting, and the Mixture of Agents (MoA) method on mathematical reasoning benchmarks. Our results show that incorporating weaker LLMs' opinions improves mathematical reasoning by an average of 5%, highlighting the value of diverse perspectives in reasoning tasks.


Interpretable Dual-Filter Fuzzy Neural Networks for Affective Brain-Computer Interfaces

arXiv.org Artificial Intelligence

Fuzzy logic provides a robust framework for enhancing explainability, particularly in domains requiring the interpretation of complex and ambiguous signals, such as brain-computer interface (BCI) systems. Despite significant advances in deep learning, interpreting human emotions remains a formidable challenge. In this work, we present iFuzzyAffectDuo, a novel computational model that integrates a dual-filter fuzzy neural network architecture for improved detection and interpretation of emotional states from neuroimaging data. The model introduces a new membership function (MF) based on the Laplace distribution, achieving superior accuracy and interpretability compared to traditional approaches. By refining the extraction of neural signals associated with specific emotions, iFuzzyAffectDuo offers a human-understandable framework that unravels the underlying decision-making processes. We validate our approach across three neuroimaging datasets using functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG), demonstrating its potential to advance affective computing. These findings open new pathways for understanding the neural basis of emotions and their application in enhancing human-computer interaction.


A Fuzzy-based Approach to Predict Human Interaction by Functional Near-Infrared Spectroscopy

arXiv.org Artificial Intelligence

The paper introduces a Fuzzy-based Attention (Fuzzy Attention Layer) mechanism, a novel computational approach to enhance the interpretability and efficacy of neural models in psychological research. The proposed Fuzzy Attention Layer mechanism is integrated as a neural network layer within the Transformer Encoder model to facilitate the analysis of complex psychological phenomena through neural signals, such as those captured by functional Near-Infrared Spectroscopy (fNIRS). By leveraging fuzzy logic, the Fuzzy Attention Layer is capable of learning and identifying interpretable patterns of neural activity. This capability addresses a significant challenge when using Transformer: the lack of transparency in determining which specific brain activities most contribute to particular predictions. Our experimental results demonstrated on fNIRS data from subjects engaged in social interactions involving handholding reveal that the Fuzzy Attention Layer not only learns interpretable patterns of neural activity but also enhances model performance. Additionally, the learned patterns provide deeper insights into the neural correlates of interpersonal touch and emotional exchange. The application of our model shows promising potential in deciphering the subtle complexities of human social behaviors, thereby contributing significantly to the fields of social neuroscience and psychological AI.