Plotting

 Chen, Xuanting


A Comprehensive Capability Analysis of GPT-3 and GPT-3.5 Series Models

arXiv.org Artificial Intelligence

GPT series models, such as GPT-3, CodeX, InstructGPT, ChatGPT, and so on, have gained considerable attention due to their exceptional natural language processing capabilities. However, despite the abundance of research on the difference in capabilities between GPT series models and fine-tuned models, there has been limited attention given to the evolution of GPT series models' capabilities over time. To conduct a comprehensive analysis of the capabilities of GPT series models, we select six representative models, comprising two GPT-3 series models (i.e., davinci and text-davinci-001) and four GPT-3.5 series models (i.e., code-davinci-002, text-davinci-002, text-davinci-003, and gpt-3.5-turbo). We evaluate their performance on nine natural language understanding (NLU) tasks using 21 datasets. In particular, we compare the performance and robustness of different models for each task under zero-shot and few-shot scenarios. Our extensive experiments reveal that the overall ability of GPT series models on NLU tasks does not increase gradually as the models evolve, especially with the introduction of the RLHF training strategy. While this strategy enhances the models' ability to generate human-like responses, it also compromises their ability to solve some tasks. Furthermore, our findings indicate that there is still room for improvement in areas such as model robustness.


Learning "O" Helps for Learning More: Handling the Concealed Entity Problem for Class-incremental NER

arXiv.org Artificial Intelligence

As the categories of named entities rapidly increase, the deployed NER models are required to keep updating toward recognizing more entity types, creating a demand for class-incremental learning for NER. Considering the privacy concerns and storage constraints, the standard paradigm for class-incremental NER updates the models with training data only annotated with the new classes, yet the entities from other entity classes are unlabeled, regarded as "Non-entity" (or "O"). In this work, we conduct an empirical study on the "Unlabeled Entity Problem" and find that it leads to severe confusion between "O" and entities, decreasing class discrimination of old classes and declining the model's ability to learn new classes. To solve the Unlabeled Entity Problem, we propose a novel representation learning method to learn discriminative representations for the entity classes and "O". Specifically, we propose an entity-aware contrastive learning method that adaptively detects entity clusters in "O". Furthermore, we propose two effective distance-based relabeling strategies for better learning the old classes. We introduce a more realistic and challenging benchmark for class-incremental NER, and the proposed method achieves up to 10.62\% improvement over the baseline methods.


How Robust is GPT-3.5 to Predecessors? A Comprehensive Study on Language Understanding Tasks

arXiv.org Artificial Intelligence

The GPT-3.5 models have demonstrated impressive performance in various Natural Language Processing (NLP) tasks, showcasing their strong understanding and reasoning capabilities. However, their robustness and abilities to handle various complexities of the open world have yet to be explored, which is especially crucial in assessing the stability of models and is a key aspect of trustworthy AI. In this study, we perform a comprehensive experimental analysis of GPT-3.5, exploring its robustness using 21 datasets (about 116K test samples) with 66 text transformations from TextFlint that cover 9 popular Natural Language Understanding (NLU) tasks. Our findings indicate that while GPT-3.5 outperforms existing fine-tuned models on some tasks, it still encounters significant robustness degradation, such as its average performance dropping by up to 35.74\% and 43.59\% in natural language inference and sentiment analysis tasks, respectively. We also show that GPT-3.5 faces some specific robustness challenges, including robustness instability, prompt sensitivity, and number sensitivity. These insights are valuable for understanding its limitations and guiding future research in addressing these challenges to enhance GPT-3.5's overall performance and generalization abilities.