Not enough data to create a plot.
Try a different view from the menu above.
Chen, Xu
STT: Stateful Tracking with Transformers for Autonomous Driving
Jing, Longlong, Yu, Ruichi, Chen, Xu, Zhao, Zhengli, Sheng, Shiwei, Graber, Colin, Chen, Qi, Li, Qinru, Wu, Shangxuan, Deng, Han, Lee, Sangjin, Sweeney, Chris, He, Qiurui, Hung, Wei-Chih, He, Tong, Zhou, Xingyi, Moussavi, Farshid, Guo, Zijian, Zhou, Yin, Tan, Mingxing, Yang, Weilong, Li, Congcong
Tracking objects in three-dimensional space is critical for autonomous driving. To ensure safety while driving, the tracker must be able to reliably track objects across frames and accurately estimate their states such as velocity and acceleration in the present. Existing works frequently focus on the association task while either neglecting the model performance on state estimation or deploying complex heuristics to predict the states. In this paper, we propose STT, a Stateful Tracking model built with Transformers, that can consistently track objects in the scenes while also predicting their states accurately. STT consumes rich appearance, geometry, and motion signals through long term history of detections and is jointly optimized for both data association and state estimation tasks. Since the standard tracking metrics like MOTA and MOTP do not capture the combined performance of the two tasks in the wider spectrum of object states, we extend them with new metrics called S-MOTA and MOTPS that address this limitation. STT achieves competitive real-time performance on the Waymo Open Dataset.
Debiased Collaborative Filtering with Kernel-Based Causal Balancing
Li, Haoxuan, Zheng, Chunyuan, Xiao, Yanghao, Wu, Peng, Geng, Zhi, Chen, Xu, Cui, Peng
Debiased collaborative filtering aims to learn an unbiased prediction model by removing different biases in observational datasets. To solve this problem, one of the simple and effective methods is based on the propensity score, which adjusts the observational sample distribution to the target one by reweighting observed instances. Ideally, propensity scores should be learned with causal balancing constraints. However, existing methods usually ignore such constraints or implement them with unreasonable approximations, which may affect the accuracy of the learned propensity scores. To bridge this gap, in this paper, we first analyze the gaps between the causal balancing requirements and existing methods such as learning the propensity with cross-entropy loss or manually selecting functions to balance. Inspired by these gaps, we propose to approximate the balancing functions in reproducing kernel Hilbert space and demonstrate that, based on the universal property and representer theorem of kernel functions, the causal balancing constraints can be better satisfied. Meanwhile, we propose an algorithm that adaptively balances the kernel function and theoretically analyze the generalization error bound of our methods. We conduct extensive experiments to demonstrate the effectiveness of our methods, and to promote this research direction, we have released our project at https://github.com/haoxuanli-pku/ICLR24-Kernel-Balancing.
Implementation of Big AI Models for Wireless Networks with Collaborative Edge Computing
Zeng, Liekang, Ye, Shengyuan, Chen, Xu, Yang, Yang
Big Artificial Intelligence (AI) models have emerged as a crucial element in various intelligent applications at the edge, such as voice assistants in smart homes and autonomous robotics in smart factories. Training big AI models, e.g., for personalized fine-tuning and continual model refinement, poses significant challenges to edge devices due to the inherent conflict between limited computing resources and intensive workload associated with training. Despite the constraints of on-device training, traditional approaches usually resort to aggregating training data and sending it to a remote cloud for centralized training. Nevertheless, this approach is neither sustainable, which strains long-range backhaul transmission and energy-consuming datacenters, nor safely private, which shares users' raw data with remote infrastructures. To address these challenges, we alternatively observe that prevalent edge environments usually contain a diverse collection of trusted edge devices with untapped idle resources, which can be leveraged for edge training acceleration. Motivated by this, in this article, we propose collaborative edge training, a novel training mechanism that orchestrates a group of trusted edge devices as a resource pool for expedited, sustainable big AI model training at the edge. As an initial step, we present a comprehensive framework for building collaborative edge training systems and analyze in-depth its merits and sustainable scheduling choices following its workflow. To further investigate the impact of its parallelism design, we empirically study a case of four typical parallelisms from the perspective of energy demand with realistic testbeds. Finally, we discuss open challenges for sustainable collaborative edge training to point to future directions of edge-centric big AI model training.
A Survey on the Memory Mechanism of Large Language Model based Agents
Zhang, Zeyu, Bo, Xiaohe, Ma, Chen, Li, Rui, Chen, Xu, Dai, Quanyu, Zhu, Jieming, Dong, Zhenhua, Wen, Ji-Rong
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities. Compared with original LLMs, LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems that need long-term and complex agent-environment interactions. The key component to support agent-environment interactions is the memory of the agents. While previous studies have proposed many promising memory mechanisms, they are scattered in different papers, and there lacks a systematical review to summarize and compare these works from a holistic perspective, failing to abstract common and effective designing patterns for inspiring future studies. To bridge this gap, in this paper, we propose a comprehensive survey on the memory mechanism of LLM-based agents. In specific, we first discuss ''what is'' and ''why do we need'' the memory in LLM-based agents. Then, we systematically review previous studies on how to design and evaluate the memory module. In addition, we also present many agent applications, where the memory module plays an important role. At last, we analyze the limitations of existing work and show important future directions. To keep up with the latest advances in this field, we create a repository at \url{https://github.com/nuster1128/LLM_Agent_Memory_Survey}.
Learn to Tour: Operator Design For Solution Feasibility Mapping in Pickup-and-delivery Traveling Salesman Problem
Fang, Bowen, Chen, Xu, Di, Xuan
This paper aims to develop a learning method for a special class of traveling salesman problems (TSP), namely, the pickup-and-delivery TSP (PDTSP), which finds the shortest tour along a sequence of one-to-one pickup-and-delivery nodes. One-to-one here means that the transported people or goods are associated with designated pairs of pickup and delivery nodes, in contrast to that indistinguishable goods can be delivered to any nodes. In PDTSP, precedence constraints need to be satisfied that each pickup node must be visited before its corresponding delivery node. Classic operations research (OR) algorithms for PDTSP are difficult to scale to large-sized problems. Recently, reinforcement learning (RL) has been applied to TSPs. The basic idea is to explore and evaluate visiting sequences in a solution space. However, this approach could be less computationally efficient, as it has to potentially evaluate many infeasible solutions of which precedence constraints are violated. To restrict solution search within a feasible space, we utilize operators that always map one feasible solution to another, without spending time exploring the infeasible solution space. Such operators are evaluated and selected as policies to solve PDTSPs in an RL framework. We make a comparison of our method and baselines, including classic OR algorithms and existing learning methods. Results show that our approach can find tours shorter than baselines.
RecGPT: Generative Personalized Prompts for Sequential Recommendation via ChatGPT Training Paradigm
Zhang, Yabin, Yu, Wenhui, Zhang, Erhan, Chen, Xu, Hu, Lantao, Jiang, Peng, Gai, Kun
ChatGPT has achieved remarkable success in natural language understanding. Considering that recommendation is indeed a conversation between users and the system with items as words, which has similar underlying pattern with ChatGPT, we design a new chat framework in item index level for the recommendation task. Our novelty mainly contains three parts: model, training and inference. For the model part, we adopt Generative Pre-training Transformer (GPT) as the sequential recommendation model and design a user modular to capture personalized information. For the training part, we adopt the two-stage paradigm of ChatGPT, including pre-training and fine-tuning. In the pre-training stage, we train GPT model by auto-regression. In the fine-tuning stage, we train the model with prompts, which include both the newly-generated results from the model and the user's feedback. For the inference part, we predict several user interests as user representations in an autoregressive manner. For each interest vector, we recall several items with the highest similarity and merge the items recalled by all interest vectors into the final result. We conduct experiments with both offline public datasets and online A/B test to demonstrate the effectiveness of our proposed method.
Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains
Wilkins-Reeves, Steven, Chen, Xu, Ma, Qi, Agarwal, Christine, Hofleitner, Aude
Distribution shifts are ubiquitous in real-world machine learning applications, posing a challenge to the generalization of models trained on one data distribution to another. We focus on scenarios where data distributions vary across multiple segments of the entire population and only make local assumptions about the differences between training and test (deployment) distributions within each segment. We propose a two-stage multiply robust estimation method to improve model performance on each individual segment for tabular data analysis. The method involves fitting a linear combination of the based models, learned using clusters of training data from multiple segments, followed by a refinement step for each segment. Our method is designed to be implemented with commonly used off-the-shelf machine learning models. We establish theoretical guarantees on the generalization bound of the method on the test risk. With extensive experiments on synthetic and real datasets, we demonstrate that the proposed method substantially improves over existing alternatives in prediction accuracy and robustness on both regression and classification tasks. We also assess its effectiveness on a user city prediction dataset from a large technology company.
Large Language Model-based Human-Agent Collaboration for Complex Task Solving
Feng, Xueyang, Chen, Zhi-Yuan, Qin, Yujia, Lin, Yankai, Chen, Xu, Liu, Zhiyuan, Wen, Ji-Rong
In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: https://github.com/XueyangFeng/ReHAC.
Efficient Online Crowdsourcing with Complex Annotations
Meir, Reshef, Nguyen, Viet-An, Chen, Xu, Ramakrishnan, Jagdish, Weinsberg, Udi
Crowdsourcing platforms use various truth discovery algorithms to aggregate annotations from multiple labelers. In an online setting, however, the main challenge is to decide whether to ask for more annotations for each item to efficiently trade off cost (i.e., the number of annotations) for quality of the aggregated annotations. In this paper, we propose a novel approach for general complex annotation (such as bounding boxes and taxonomy paths), that works in an online crowdsourcing setting. We prove that the expected average similarity of a labeler is linear in their accuracy \emph{conditional on the reported label}. This enables us to infer reported label accuracy in a broad range of scenarios. We conduct extensive evaluations on real-world crowdsourcing data from Meta and show the effectiveness of our proposed online algorithms in improving the cost-quality trade-off.
M$^3$TN: Multi-gate Mixture-of-Experts based Multi-valued Treatment Network for Uplift Modeling
Sun, Zexu, Chen, Xu
Uplift modeling is a technique used to predict the effect of a treatment (e.g., discounts) on an individual's response. Although several methods have been proposed for multi-valued treatment, they are extended from binary treatment methods. There are still some limitations. Firstly, existing methods calculate uplift based on predicted responses, which may not guarantee a consistent uplift distribution between treatment and control groups. Moreover, this may cause cumulative errors for multi-valued treatment. Secondly, the model parameters become numerous with many prediction heads, leading to reduced efficiency. To address these issues, we propose a novel \underline{M}ulti-gate \underline{M}ixture-of-Experts based \underline{M}ulti-valued \underline{T}reatment \underline{N}etwork (M$^3$TN). M$^3$TN consists of two components: 1) a feature representation module with Multi-gate Mixture-of-Experts to improve the efficiency; 2) a reparameterization module by modeling uplift explicitly to improve the effectiveness. We also conduct extensive experiments to demonstrate the effectiveness and efficiency of our M$^3$TN.