Plotting

 Chen, Xu


Explainable Recommendation: A Survey and New Perspectives

arXiv.org Artificial Intelligence

Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.


Fictitious GAN: Training GANs with Historical Models

arXiv.org Machine Learning

Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples.


Superposition-Assisted Stochastic Optimization for Hawkes Processes

arXiv.org Machine Learning

We consider the learning of multi-agent Hawkes processes, a model containing multiple Hawkes processes with shared endogenous impact functions and different exogenous intensities. In the framework of stochastic maximum likelihood estimation, we explore the associated risk bound. Further, we consider the superposition of Hawkes processes within the model, and demonstrate that under certain conditions such an operation is beneficial for tightening the risk bound. Accordingly, we propose a stochastic optimization algorithm assisted with a diversity-driven superposition strategy, achieving better learning results with improved convergence properties. The effectiveness of the proposed method is verified on synthetic data, and its potential to solve the cold-start problem of sequential recommendation systems is demonstrated on real-world data.


Benefits from Superposed Hawkes Processes

arXiv.org Machine Learning

The superposition of temporal point processes has been studied for many years, although the usefulness of such models for practical applications has not be fully developed. We investigate superposed Hawkes process as an important class of such models, with properties studied in the framework of least squares estimation. The superposition of Hawkes processes is demonstrated to be beneficial for tightening the upper bound of excess risk under certain conditions, and we show the feasibility of the benefit in typical situations. The usefulness of superposed Hawkes processes is verified on synthetic data, and its potential to solve the cold-start problem of recommendation systems is demonstrated on real-world data.


Feedback-Controlled Sequential Lasso Screening

arXiv.org Machine Learning

One way to solve lasso problems when the dictionary does not fit into available memory is to first screen the dictionary to remove unneeded features. Prior research has shown that sequential screening methods offer the greatest promise in this endeavor. Most existing work on sequential screening targets the context of tuning parameter selection, where one screens and solves a sequence of $N$ lasso problems with a fixed grid of geometrically spaced regularization parameters. In contrast, we focus on the scenario where a target regularization parameter has already been chosen via cross-validated model selection, and we then need to solve many lasso instances using this fixed value. In this context, we propose and explore a feedback controlled sequential screening scheme. Feedback is used at each iteration to select the next problem to be solved. This allows the sequence of problems to be adapted to the instance presented and the number of intermediate problems to be automatically selected. We demonstrate our feedback scheme using several datasets including a dictionary of approximate size 100,000 by 300,000.


Unsupervised Deep Haar Scattering on Graphs

Neural Information Processing Systems

The classification of high-dimensional data defined on graphs is particularly difficult when the graph geometry is unknown. We introduce a Haar scattering transform on graphs, which computes invariant signal descriptors. It is implemented with a deep cascade of additions, subtractions and absolute values, which iteratively compute orthogonal Haar wavelet transforms. Multiscale neighborhoods of unknown graphs are estimated by minimizing an average total variation, with a pair matching algorithm of polynomial complexity. Supervised classification with dimension reduction is tested on data bases of scrambled images, and for signals sampled on unknown irregular grids on a sphere.