Goto

Collaborating Authors

 Chen, Xingyu


LIO-PPF: Fast LiDAR-Inertial Odometry via Incremental Plane Pre-Fitting and Skeleton Tracking

arXiv.org Artificial Intelligence

As a crucial infrastructure of intelligent mobile robots, LiDAR-Inertial odometry (LIO) provides the basic capability of state estimation by tracking LiDAR scans. The high-accuracy tracking generally involves the kNN search, which is used with minimizing the point-to-plane distance. The cost for this, however, is maintaining a large local map and performing kNN plane fit for each point. In this work, we reduce both time and space complexity of LIO by saving these unnecessary costs. Technically, we design a plane pre-fitting (PPF) pipeline to track the basic skeleton of the 3D scene. In PPF, planes are not fitted individually for each scan, let alone for each point, but are updated incrementally as the scene 'flows'. Unlike kNN, the PPF is more robust to noisy and non-strict planes with our iterative Principal Component Analyse (iPCA) refinement. Moreover, a simple yet effective sandwich layer is introduced to eliminate false point-to-plane matches. Our method was extensively tested on a total number of 22 sequences across 5 open datasets, and evaluated in 3 existing state-of-the-art LIO systems. By contrast, LIO-PPF can consume only 36% of the original local map size to achieve up to 4x faster residual computing and 1.92x overall FPS, while maintaining the same level of accuracy. We fully open source our implementation at https://github.com/xingyuuchen/LIO-PPF.


ESMC: Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint

arXiv.org Artificial Intelligence

Large-scale online recommender system spreads all over the Internet being in charge of two basic tasks: Click-Through Rate (CTR) and Post-Click Conversion Rate (CVR) estimations. However, traditional CVR estimators suffer from well-known Sample Selection Bias and Data Sparsity issues. Entire space models were proposed to address the two issues via tracing the decision-making path of "exposure_click_purchase". Further, some researchers observed that there are purchase-related behaviors between click and purchase, which can better draw the user's decision-making intention and improve the recommendation performance. Thus, the decision-making path has been extended to "exposure_click_in-shop action_purchase" and can be modeled with conditional probability approach. Nevertheless, we observe that the chain rule of conditional probability does not always hold. We report Probability Space Confusion (PSC) issue and give a derivation of difference between ground-truth and estimation mathematically. We propose a novel Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint (ESMC) and two alternatives: Entire Space Multi-Task Model with Siamese Network (ESMS) and Entire Space Multi-Task Model in Global Domain (ESMG) to address the PSC issue. Specifically, we handle "exposure_click_in-shop action" and "in-shop action_purchase" separately in the light of characteristics of in-shop action. The first path is still treated with conditional probability while the second one is treated with parameter constraint strategy. Experiments on both offline and online environments in a large-scale recommendation system illustrate the superiority of our proposed methods over state-of-the-art models. The real-world datasets will be released.


Prioritized Planning for Target-Oriented Manipulation via Hierarchical Stacking Relationship Prediction

arXiv.org Artificial Intelligence

In scenarios involving the grasping of multiple targets, the learning of stacking relationships between objects is fundamental for robots to execute safely and efficiently. However, current methods lack subdivision for the hierarchy of stacking relationship types. In scenes where objects are mostly stacked in an orderly manner, they are incapable of performing human-like and high-efficient grasping decisions. This paper proposes a perception-planning method to distinguish different stacking types between objects and generate prioritized manipulation order decisions based on given target designations. We utilize a Hierarchical Stacking Relationship Network (HSRN) to discriminate the hierarchy of stacking and generate a refined Stacking Relationship Tree (SRT) for relationship description. Considering that objects with high stacking stability can be grasped together if necessary, we introduce an elaborate decision-making planner based on the Partially Observable Markov Decision Process (POMDP), which leverages observations and generates the least grasp-consuming decision chain with robustness and is suitable for simultaneously specifying multiple targets. To verify our work, we set the scene to the dining table and augment the REGRAD dataset with a set of common tableware models for network training. Experiments show that our method effectively generates grasping decisions that conform to human requirements, and improves the implementation efficiency compared with existing methods on the basis of guaranteeing the success rate.


MMRDN: Consistent Representation for Multi-View Manipulation Relationship Detection in Object-Stacked Scenes

arXiv.org Artificial Intelligence

Manipulation relationship detection (MRD) aims to guide the robot to grasp objects in the right order, which is important to ensure the safety and reliability of grasping in object stacked scenes. Previous works infer manipulation relationship by deep neural network trained with data collected from a predefined view, which has limitation in visual dislocation in unstructured environments. Multi-view data provide more comprehensive information in space, while a challenge of multi-view MRD is domain shift. In this paper, we propose a novel multi-view fusion framework, namely multi-view MRD network (MMRDN), which is trained by 2D and 3D multi-view data. We project the 2D data from different views into a common hidden space and fit the embeddings with a set of Von-Mises-Fisher distributions to learn the consistent representations. Besides, taking advantage of position information within the 3D data, we select a set of $K$ Maximum Vertical Neighbors (KMVN) points from the point cloud of each object pair, which encodes the relative position of these two objects. Finally, the features of multi-view 2D and 3D data are concatenated to predict the pairwise relationship of objects. Experimental results on the challenging REGRAD dataset show that MMRDN outperforms the state-of-the-art methods in multi-view MRD tasks. The results also demonstrate that our model trained by synthetic data is capable to transfer to real-world scenarios.


SimTS: Rethinking Contrastive Representation Learning for Time Series Forecasting

arXiv.org Artificial Intelligence

Contrastive learning methods have shown an impressive ability to learn meaningful representations for image or time series classification. However, these methods are less effective for time series forecasting, as optimization of instance discrimination is not directly applicable to predicting the future state from the history context. Moreover, the construction of positive and negative pairs in current technologies strongly relies on specific time series characteristics, restricting their generalization across diverse types of time series data. To address these limitations, we propose SimTS, a simple representation learning approach for improving time series forecasting by learning to predict the future from the past in the latent space. SimTS does not rely on negative pairs or specific assumptions about the characteristics of the particular time series. Our extensive experiments on several benchmark time series forecasting datasets show that SimTS achieves competitive performance compared to existing contrastive learning methods. Furthermore, we show the shortcomings of the current contrastive learning framework used for time series forecasting through a detailed ablation study. Overall, our work suggests that SimTS is a promising alternative to other contrastive learning approaches for time series forecasting.


Self-Supervised Monocular Depth Estimation: Solving the Edge-Fattening Problem

arXiv.org Artificial Intelligence

Self-supervised monocular depth estimation (MDE) models universally suffer from the notorious edge-fattening issue. Triplet loss, as a widespread metric learning strategy, has largely succeeded in many computer vision applications. In this paper, we redesign the patch-based triplet loss in MDE to alleviate the ubiquitous edge-fattening issue. We show two drawbacks of the raw triplet loss in MDE and demonstrate our problem-driven redesigns. First, we present a min. operator based strategy applied to all negative samples, to prevent well-performing negatives sheltering the error of edge-fattening negatives. Second, we split the anchor-positive distance and anchor-negative distance from within the original triplet, which directly optimizes the positives without any mutual effect with the negatives. Extensive experiments show the combination of these two small redesigns can achieve unprecedented results: Our powerful and versatile triplet loss not only makes our model outperform all previous SoTA by a large margin, but also provides substantial performance boosts to a large number of existing models, while introducing no extra inference computation at all.


META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI

arXiv.org Artificial Intelligence

Task-oriented dialogue (TOD) systems have been widely used by mobile phone intelligent assistants to accomplish tasks such as calendar scheduling or hotel reservation. Current TOD systems usually focus on multi-turn text/speech interaction, then they would call back-end APIs designed for TODs to perform the task. However, this API-based architecture greatly limits the information-searching capability of intelligent assistants and may even lead to task failure if TOD-specific APIs are not available or the task is too complicated to be executed by the provided APIs. In this paper, we propose a new TOD architecture: GUI-based task-oriented dialogue system (GUI-TOD). A GUI-TOD system can directly perform GUI operations on real APPs and execute tasks without invoking TOD-specific backend APIs. Furthermore, we release META-GUI, a dataset for training a Multi-modal convErsaTional Agent on mobile GUI. We also propose a multi-model action prediction and response model, which show promising results on META-GUI. The dataset, codes and leaderboard are publicly available.


Greedy based Value Representation for Optimal Coordination in Multi-agent Reinforcement Learning

arXiv.org Artificial Intelligence

Due to the representation limitation of the joint Q value function, multi-agent reinforcement learning methods with linear value decomposition (LVD) or monotonic value decomposition (MVD) suffer from relative overgeneralization. As a result, they can not ensure optimal consistency (i.e., the correspondence between individual greedy actions and the maximal true Q value). In this paper, we derive the expression of the joint Q value function of LVD and MVD. According to the expression, we draw a transition diagram, where each self-transition node (STN) is a possible convergence. To ensure optimal consistency, the optimal node is required to be the unique STN. Therefore, we propose the greedy-based value representation (GVR), which turns the optimal node into an STN via inferior target shaping and further eliminates the non-optimal STNs via superior experience replay. In addition, GVR achieves an adaptive trade-off between optimality and stability. Our method outperforms state-of-the-art baselines in experiments on various benchmarks. Theoretical proofs and empirical results on matrix games demonstrate that GVR ensures optimal consistency under sufficient exploration.


Hallucinated Neural Radiance Fields in the Wild

arXiv.org Artificial Intelligence

Neural Radiance Fields (NeRF) has recently gained popularity for its impressive novel view synthesis ability. This paper studies the problem of hallucinated NeRF: i.e. recovering a realistic NeRF at a different time of day from a group of tourism images. Existing solutions adopt NeRF with a controllable appearance embedding to render novel views under various conditions, but cannot render view-consistent images with an unseen appearance. To solve this problem, we present an end-to-end framework for constructing a hallucinated NeRF, dubbed as Ha-NeRF. Specifically, we propose an appearance hallucination module to handle time-varying appearances and transfer them to novel views. Considering the complex occlusions of tourism images, an anti-occlusion module is introduced to decompose the static subjects for visibility accurately. Experimental results on synthetic data and real tourism photo collections demonstrate that our method can not only hallucinate the desired appearances, but also render occlusion-free images from different views. The project and supplementary materials are available at https://rover-xingyu.github.io/Ha-NeRF/.


Proportionally Fair Clustering

arXiv.org Machine Learning

The data points in machine learning are often real human beings. There is legitimate concern that traditional machine learning algorithms that are blind to this fact may inadvertently exacerbate problems of bias and injustice in society [25]. Motivated by concerns ranging from the granting of bail in the legal system to the quality of recommender systems, researchers have devoted considerable effort to developing fair algorithms for the canonical supervised learning tasks of classification and regression [13, 28, 20, 27, 34, 11, 30, 35, 26, 18, 21]. We extend this work to a canonical problem in unsupervised learning: centroid clustering. In centroid clustering, we want to partition data into k clusters by choosing k "centers" and then matching points to one of the centers.