Goto

Collaborating Authors

 Chen, Weitong


DBRec: Dual-Bridging Recommendation via Discovering Latent Groups

arXiv.org Machine Learning

In recommender systems, the user-item interaction data is usually sparse and not sufficient for learning comprehensive user/item representations for recommendation. To address this problem, we propose a novel dual-bridging recommendation model (DBRec). DBRec performs latent user/item group discovery simultaneously with collaborative filtering, and interacts group information with users/items for bridging similar users/items. Therefore, a user's preference over an unobserved item, in DBRec, can be bridged by the users within the same group who have rated the item, or the user-rated items that share the same group with the unobserved item. In addition, we propose to jointly learn user-user group (item-item group) hierarchies, so that we can effectively discover latent groups and learn compact user/item representations. We jointly integrate collaborative filtering, latent group discovering and hierarchical modelling into a unified framework, so that all the model parameters can be learned toward the optimization of the objective function. We validate the effectiveness of the proposed model with two real datasets, and demonstrate its advantage over the state-of-the-art recommendation models with extensive experiments.


Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface

AAAI Conferences

Brain-Computer Interface (BCI) is a system empowering humans to communicate with or control the outside world with exclusively brain intentions. Electroencephalography (EEG) based BCIs are promising solutions due to their convenient and portable instruments. Despite the extensive research of EEG in recent years, it is still challenging to interpret EEG signals effectively due to the massive noises in EEG signals (e.g., low signal-noise ratio and incomplete EEG signals), and difficulties in capturing the inconspicuous relationships between EEG signals and certain brain activities. Most existing works either only consider EEG as chain-like sequences neglecting complex dependencies between adjacent signals or requiring pre-processing such as transforming EEG waves into images. In this paper, we introduce both cascade and parallel convolutional recurrent neural network models for precisely identifying human intended movements and instructions effectively learning the compositional spatio-temporal representations of raw EEG streams. Extensive experiments on a large scale movement intention EEG dataset (108 subjects,3,145,160 EEG records) have demonstrated that both models achieve high accuracy near 98.3% and outperform a set of baseline methods and most recent deep learning based EEG recognition models, yielding a significant accuracy increase of 18% in the cross-subject validation scenario. The developed models are further evaluated with a real-world BCI and achieve a recognition accuracy of 93% over five instruction intentions. This suggests the proposed models are able to generalize over different kinds of intentions and BCI systems.