Plotting

 Chen, Shuo


DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion

arXiv.org Artificial Intelligence

In this paper, we introduce \textbf{DimensionX}, a framework designed to generate photorealistic 3D and 4D scenes from just a single image with video diffusion. Our approach begins with the insight that both the spatial structure of a 3D scene and the temporal evolution of a 4D scene can be effectively represented through sequences of video frames. While recent video diffusion models have shown remarkable success in producing vivid visuals, they face limitations in directly recovering 3D/4D scenes due to limited spatial and temporal controllability during generation. To overcome this, we propose ST-Director, which decouples spatial and temporal factors in video diffusion by learning dimension-aware LoRAs from dimension-variant data. This controllable video diffusion approach enables precise manipulation of spatial structure and temporal dynamics, allowing us to reconstruct both 3D and 4D representations from sequential frames with the combination of spatial and temporal dimensions. Additionally, to bridge the gap between generated videos and real-world scenes, we introduce a trajectory-aware mechanism for 3D generation and an identity-preserving denoising strategy for 4D generation. Extensive experiments on various real-world and synthetic datasets demonstrate that DimensionX achieves superior results in controllable video generation, as well as in 3D and 4D scene generation, compared with previous methods.


Visual Question Decomposition on Multimodal Large Language Models

arXiv.org Artificial Intelligence

Question decomposition has emerged as an effective strategy for prompting Large Language Models (LLMs) to answer complex questions. However, while existing methods primarily focus on unimodal language models, the question decomposition capability of Multimodal Large Language Models (MLLMs) has yet to be explored. To this end, this paper explores visual question decomposition on MLLMs. Specifically, we introduce a systematic evaluation framework including a dataset and several evaluation criteria to assess the quality of the decomposed sub-questions, revealing that existing MLLMs struggle to produce high-quality sub-questions. To address this limitation, we propose a specific finetuning dataset, DecoVQA+, for enhancing the model's question decomposition capability. Aiming at enabling models to perform appropriate selective decomposition, we propose an efficient finetuning pipeline. The finetuning pipeline consists of our proposed dataset and a training objective for selective decomposition. Finetuned MLLMs demonstrate significant improvements in the quality of sub-questions and the policy of selective question decomposition. Additionally, the models also achieve higher accuracy with selective decomposition on VQA benchmark datasets.


Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

arXiv.org Artificial Intelligence

Fourier features based positional encoding (PE) is commonly used in machine learning tasks that involve learning high-frequency features from low-dimensional inputs, such as 3D view synthesis and time series regression with neural tangent kernels. Despite their effectiveness, existing PEs require manual, empirical adjustment of crucial hyperparameters, specifically the Fourier features, tailored to each unique task. Further, PEs face challenges in efficiently learning high-frequency functions, particularly in tasks with limited data. In this paper, we introduce sinusoidal PE (SPE), designed to efficiently learn adaptive frequency features closely aligned with the true underlying function. Our experiments demonstrate that SPE, without hyperparameter tuning, consistently achieves enhanced fidelity and faster training across various tasks, including 3D view synthesis, Text-to-Speech generation, and 1D regression. SPE is implemented as a direct replacement for existing PEs. Its plug-and-play nature lets numerous tasks easily adopt and benefit from SPE.


Freeplane: Unlocking Free Lunch in Triplane-Based Sparse-View Reconstruction Models

arXiv.org Artificial Intelligence

Creating 3D assets from single-view images is a complex task that demands a deep understanding of the world. Recently, feed-forward 3D generative models have made significant progress by training large reconstruction models on extensive 3D datasets, with triplanes being the preferred 3D geometry representation. However, effectively utilizing the geometric priors of triplanes, while minimizing artifacts caused by generated inconsistent multi-view images, remains a challenge. In this work, we present \textbf{Fre}quency modulat\textbf{e}d tri\textbf{plane} (\textbf{Freeplane}), a simple yet effective method to improve the generation quality of feed-forward models without additional training. We first analyze the role of triplanes in feed-forward methods and find that the inconsistent multi-view images introduce high-frequency artifacts on triplanes, leading to low-quality 3D meshes. Based on this observation, we propose strategically filtering triplane features and combining triplanes before and after filtering to produce high-quality textured meshes. These techniques incur no additional cost and can be seamlessly integrated into pre-trained feed-forward models to enhance their robustness against the inconsistency of generated multi-view images. Both qualitative and quantitative results demonstrate that our method improves the performance of feed-forward models by simply modulating triplanes. All you need is to modulate the triplanes during inference.


Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering

arXiv.org Artificial Intelligence

For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions within 3D scenes from video is crucial for effective reasoning. In this work, we introduce a video question answering dataset SuperCLEVR-Physics that focuses on the dynamics properties of objects. We concentrate on physical concepts -- velocity, acceleration, and collisions within 4D scenes, where the model needs to fully understand these dynamics properties and answer the questions built on top of them. From the evaluation of a variety of current VLMs, we find that these models struggle with understanding these dynamic properties due to the lack of explicit knowledge about the spatial structure in 3D and world dynamics in time variants. To demonstrate the importance of an explicit 4D dynamics representation of the scenes in understanding world dynamics, we further propose NS-4Dynamics, a Neural-Symbolic model for reasoning on 4D Dynamics properties under explicit scene representation from videos. Using scene rendering likelihood combining physical prior distribution, the 4D scene parser can estimate the dynamics properties of objects over time to and interpret the observation into 4D scene representation as world states. By further incorporating neural-symbolic reasoning, our approach enables advanced applications in future prediction, factual reasoning, and counterfactual reasoning. Our experiments show that our NS-4Dynamics suppresses previous VLMs in understanding the dynamics properties and answering questions about factual queries, future prediction, and counterfactual reasoning. Moreover, based on the explicit 4D scene representation, our model is effective in reconstructing the 4D scenes and re-simulate the future or counterfactual events.


A Systematic Bias of Machine Learning Regression Models and Its Correction: an Application to Imaging-based Brain Age Prediction

arXiv.org Machine Learning

Machine learning models for continuous outcomes often yield systematically biased predictions, particularly for values that largely deviate from the mean. Specifically, predictions for large-valued outcomes tend to be negatively biased, while those for small-valued outcomes are positively biased. We refer to this linear central tendency warped bias as the "systematic bias of machine learning regression". In this paper, we first demonstrate that this issue persists across various machine learning models, and then delve into its theoretical underpinnings. We propose a general constrained optimization approach designed to correct this bias and develop a computationally efficient algorithm to implement our method. Our simulation results indicate that our correction method effectively eliminates the bias from the predicted outcomes. We apply the proposed approach to the prediction of brain age using neuroimaging data. In comparison to competing machine learning models, our method effectively addresses the longstanding issue of "systematic bias of machine learning regression" in neuroimaging-based brain age calculation, yielding unbiased predictions of brain age.


Beyond the Edge: An Advanced Exploration of Reinforcement Learning for Mobile Edge Computing, its Applications, and Future Research Trajectories

arXiv.org Artificial Intelligence

Mobile Edge Computing (MEC) broadens the scope of computation and storage beyond the central network, incorporating edge nodes close to end devices. This expansion facilitates the implementation of large-scale "connected things" within edge networks. The advent of applications necessitating real-time, high-quality service presents several challenges, such as low latency, high data rate, reliability, efficiency, and security, all of which demand resolution. The incorporation of reinforcement learning (RL) methodologies within MEC networks promotes a deeper understanding of mobile user behaviors and network dynamics, thereby optimizing resource use in computing and communication processes. This paper offers an exhaustive survey of RL applications in MEC networks, initially presenting an overview of RL from its fundamental principles to the latest advanced frameworks. Furthermore, it outlines various RL strategies employed in offloading, caching, and communication within MEC networks. Finally, it explores open issues linked with software and hardware platforms, representation, RL robustness, safe RL, large-scale scheduling, generalization, security, and privacy. The paper proposes specific RL techniques to mitigate these issues and provides insights into their practical applications.


Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?

arXiv.org Artificial Intelligence

Various jailbreak attacks have been proposed to red-team Large Language Models (LLMs) and revealed the vulnerable safeguards of LLMs. Besides, some methods are not limited to the textual modality and extend the jailbreak attack to Multimodal Large Language Models (MLLMs) by perturbing the visual input. However, the absence of a universal evaluation benchmark complicates the performance reproduction and fair comparison. Besides, there is a lack of comprehensive evaluation of closed-source state-of-the-art (SOTA) models, especially MLLMs, such as GPT-4V. To address these issues, this work first builds a comprehensive jailbreak evaluation dataset with 1445 harmful questions covering 11 different safety policies. Based on this dataset, extensive red-teaming experiments are conducted on 11 different LLMs and MLLMs, including both SOTA proprietary models and open-source models. We then conduct a deep analysis of the evaluated results and find that (1) GPT4 and GPT-4V demonstrate better robustness against jailbreak attacks compared to open-source LLMs and MLLMs. Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have shown superior performance in text generation. To avoid generating unobjectionable content learned from the web-scale training corpus, stringent safety regulations have been applied during the safety alignment (Ouyang et al., 2022; Touvron et al., 2023). However, many jailbreak attacks have been proven to be able to bypass these safeguards and successfully elicit harmful generations.


Stop Reasoning! When Multimodal LLMs with Chain-of-Thought Reasoning Meets Adversarial Images

arXiv.org Artificial Intelligence

Recently, Multimodal LLMs (MLLMs) have shown a great ability to understand images. However, like traditional vision models, they are still vulnerable to adversarial images. Meanwhile, Chain-of-Thought (CoT) reasoning has been widely explored on MLLMs, which not only improves model's performance, but also enhances model's explainability by giving intermediate reasoning steps. Nevertheless, there is still a lack of study regarding MLLMs' adversarial robustness with CoT and an understanding of what the rationale looks like when MLLMs infer wrong answers with adversarial images. Our research evaluates the adversarial robustness of MLLMs when employing CoT reasoning, finding that CoT marginally improves adversarial robustness against existing attack methods. Moreover, we introduce a novel stop-reasoning attack technique that effectively bypasses the CoT-induced robustness enhancements. Finally, we demonstrate the alterations in CoT reasoning when MLLMs confront adversarial images, shedding light on their reasoning process under adversarial attacks.


CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model

arXiv.org Artificial Intelligence

Feed-forward 3D generative models like the Large Reconstruction Model (LRM) have demonstrated exceptional generation speed. However, the transformer-based methods do not leverage the geometric priors of the triplane component in their architecture, often leading to sub-optimal quality given the limited size of 3D data and slow training. In this work, we present the Convolutional Reconstruction Model (CRM), a high-fidelity feed-forward single image-to-3D generative model. Recognizing the limitations posed by sparse 3D data, we highlight the necessity of integrating geometric priors into network design. CRM builds on the key observation that the visualization of triplane exhibits spatial correspondence of six orthographic images. First, it generates six orthographic view images from a single input image, then feeds these images into a convolutional U-Net, leveraging its strong pixel-level alignment capabilities and significant bandwidth to create a high-resolution triplane. CRM further employs Flexicubes as geometric representation, facilitating direct end-to-end optimization on textured meshes. Overall, our model delivers a high-fidelity textured mesh from an image in just 10 seconds, without any test-time optimization.