Plotting

 Chen, Qian


Imaging through multimode fibres with physical prior

arXiv.org Artificial Intelligence

Imaging through perturbed multimode fibres based on deep learning has been widely researched. However, existing methods mainly use target-speckle pairs in different configurations. It is challenging to reconstruct targets without trained networks. In this paper, we propose a physics-assisted, unsupervised, learning-based fibre imaging scheme. The role of the physical prior is to simplify the mapping relationship between the speckle pattern and the target image, thereby reducing the computational complexity. The unsupervised network learns target features according to the optimized direction provided by the physical prior. Therefore, the reconstruction process of the online learning only requires a few speckle patterns and unpaired targets. The proposed scheme also increases the generalization ability of the learning-based method in perturbed multimode fibres. Our scheme has the potential to extend the application of multimode fibre imaging.


Differentially Private Pre-Trained Model Fusion using Decentralized Federated Graph Matching

arXiv.org Artificial Intelligence

Model fusion is becoming a crucial component in the context of model-as-a-service scenarios, enabling the delivery of high-quality model services to local users. However, this approach introduces privacy risks and imposes certain limitations on its applications. Ensuring secure model exchange and knowledge fusion among users becomes a significant challenge in this setting. To tackle this issue, we propose PrivFusion, a novel architecture that preserves privacy while facilitating model fusion under the constraints of local differential privacy. PrivFusion leverages a graph-based structure, enabling the fusion of models from multiple parties without necessitating retraining. By employing randomized mechanisms, PrivFusion ensures privacy guarantees throughout the fusion process. To enhance model privacy, our approach incorporates a hybrid local differentially private mechanism and decentralized federated graph matching, effectively protecting both activation values and weights. Additionally, we introduce a perturbation filter adapter to alleviate the impact of randomized noise, thereby preserving the utility of the fused model. Through extensive experiments conducted on diverse image datasets and real-world healthcare applications, we provide empirical evidence showcasing the effectiveness of PrivFusion in maintaining model performance while preserving privacy. Our contributions offer valuable insights and practical solutions for secure and collaborative data analysis within the domain of privacy-preserving model fusion.


CodeTransOcean: A Comprehensive Multilingual Benchmark for Code Translation

arXiv.org Artificial Intelligence

Recent code translation techniques exploit neural machine translation models to translate source code from one programming language to another to satisfy production compatibility or to improve efficiency of codebase maintenance. Most existing code translation datasets only focus on a single pair of popular programming languages. To advance research on code translation and meet diverse requirements of real-world applications, we construct CodeTransOcean, a large-scale comprehensive benchmark that supports the largest variety of programming languages for code translation. CodeTransOcean consists of three novel multilingual datasets, namely, MultilingualTrans supporting translations between multiple popular programming languages, NicheTrans for translating between niche programming languages and popular ones, and LLMTrans for evaluating executability of translated code by large language models (LLMs). CodeTransOcean also includes a novel cross-framework dataset, DLTrans, for translating deep learning code across different frameworks. We develop multilingual modeling approaches for code translation and demonstrate their great potential in improving the translation quality of both low-resource and high-resource language pairs and boosting the training efficiency. We also propose a novel evaluation metric Debugging Success Rate@K for program-level code translation. Last but not least, we evaluate LLM ChatGPT on our datasets and investigate its potential for fuzzy execution predictions. We build baselines for CodeTransOcean and analyze challenges of code translation for guiding future research. The CodeTransOcean datasets and code are publicly available at https://github.com/WeixiangYAN/CodeTransOcean.


Ditto: A Simple and Efficient Approach to Improve Sentence Embeddings

arXiv.org Artificial Intelligence

Prior studies diagnose the anisotropy problem in sentence representations from pre-trained language models, e.g., BERT, without fine-tuning. Our analysis reveals that the sentence embeddings from BERT suffer from a bias towards uninformative words, limiting the performance in semantic textual similarity (STS) tasks. To address this bias, we propose a simple and efficient unsupervised approach, Diagonal Attention Pooling (Ditto), which weights words with model-based importance estimations and computes the weighted average of word representations from pre-trained models as sentence embeddings. Ditto can be easily applied to any pre-trained language model as a postprocessing operation. Compared to prior sentence embedding approaches, Ditto does not add parameters nor requires any learning. Empirical evaluations demonstrate that our proposed Ditto can alleviate the anisotropy problem and improve various pre-trained models on STS tasks.


Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling

arXiv.org Artificial Intelligence

Topic segmentation is critical for obtaining structured documents and improving downstream tasks such as information retrieval. Due to its ability of automatically exploring clues of topic shift from abundant labeled data, recent supervised neural models have greatly promoted the development of long document topic segmentation, but leaving the deeper relationship between coherence and topic segmentation underexplored. Therefore, this paper enhances the ability of supervised models to capture coherence from both logical structure and semantic similarity perspectives to further improve the topic segmentation performance, proposing Topic-aware Sentence Structure Prediction (TSSP) and Contrastive Semantic Similarity Learning (CSSL). Specifically, the TSSP task is proposed to force the model to comprehend structural information by learning the original relations between adjacent sentences in a disarrayed document, which is constructed by jointly disrupting the original document at topic and sentence levels. Moreover, we utilize inter- and intra-topic information to construct contrastive samples and design the CSSL objective to ensure that the sentences representations in the same topic have higher similarity, while those in different topics are less similar. Extensive experiments show that the Longformer with our approach significantly outperforms old state-of-the-art (SOTA) methods. Our approach improve $F_1$ of old SOTA by 3.42 (73.74 -> 77.16) and reduces $P_k$ by 1.11 points (15.0 -> 13.89) on WIKI-727K and achieves an average relative reduction of 4.3% on $P_k$ on WikiSection. The average relative $P_k$ drop of 8.38% on two out-of-domain datasets also demonstrates the robustness of our approach.


MeKB-Rec: Personal Knowledge Graph Learning for Cross-Domain Recommendation

arXiv.org Artificial Intelligence

It is a long-standing challenge in modern recommender systems to effectively make recommendations for new users, namely the cold-start problem. Cross-Domain Recommendation (CDR) has been proposed to address this challenge, but current ways to represent users' interests across systems are still severely limited. We introduce Personal Knowledge Graph (PKG) as a domain-invariant interest representation, and propose a novel CDR paradigm named MeKB-Rec. We first link users and entities in a knowledge base to construct a PKG of users' interests, named MeKB. Then we learn a semantic representation of MeKB for the cross-domain recommendation. To efficiently utilize limited training data in CDR, MeKB-Rec employs Pretrained Language Models to inject world knowledge into understanding users' interests. Beyond most existing systems, our approach builds a semantic mapping across domains which breaks the requirement for in-domain user behaviors, enabling zero-shot recommendations for new users in a low-resource domain. We experiment MeKB-Rec on well-established public CDR datasets, and demonstrate that the new formulation % is more powerful than previous approaches, achieves a new state-of-the-art that significantly improves HR@10 and NDCG@10 metrics over best previous approaches by 24\%--91\%, with a 105\% improvement for HR@10 of zero-shot users with no behavior in the target domain. We deploy MeKB-Rec in WeiXin recommendation scenarios and achieve significant gains in core online metrics. MeKB-Rec is now serving hundreds of millions of users in real-world products.


PAGE: Equilibrate Personalization and Generalization in Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) is becoming a major driving force behind machine learning as a service, where customers (clients) collaboratively benefit from shared local updates under the orchestration of the service provider (server). Representing clients' current demands and the server's future demand, local model personalization and global model generalization are separately investigated, as the ill-effects of data heterogeneity enforce the community to focus on one over the other. However, these two seemingly competing goals are of equal importance rather than black and white issues, and should be achieved simultaneously. In this paper, we propose the first algorithm to balance personalization and generalization on top of game theory, dubbed PAGE, which reshapes FL as a co-opetition game between clients and the server. To explore the equilibrium, PAGE further formulates the game as Markov decision processes, and leverages the reinforcement learning algorithm, which simplifies the solving complexity. Extensive experiments on four widespread datasets show that PAGE outperforms state-of-the-art FL baselines in terms of global and local prediction accuracy simultaneously, and the accuracy can be improved by up to 35.20% and 39.91%, respectively. In addition, biased variants of PAGE imply promising adaptiveness to demand shifts in practice.


LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT

arXiv.org Artificial Intelligence

Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks. However, there has been limited research on applying similar frameworks to audio tasks. Previously proposed large language models for audio tasks either lack sufficient quantitative evaluations, or are limited to tasks for recognizing and understanding audio content, or significantly underperform existing state-of-the-art (SOTA) models. In this paper, we propose LauraGPT, a unified GPT model for audio recognition, understanding, and generation. LauraGPT is a versatile language model that can process both audio and text inputs and generate outputs in either modalities. It can perform a wide range of tasks related to content, semantics, paralinguistics, and audio-signal analysis. Some of its noteworthy tasks include automatic speech recognition, speech-to-text translation, text-to-speech synthesis, machine translation, speech enhancement, automated audio captioning, speech emotion recognition, and spoken language understanding. To achieve this goal, we use a combination of continuous and discrete features for audio. We encode input audio into continuous representations using an audio encoder and decode output audio from discrete codec codes. We then fine-tune a large decoder-only Transformer-based language model on multiple audio-to-text, text-to-audio, audio-to-audio, and text-to-text tasks using a supervised multitask learning approach. Extensive experiments show that LauraGPT achieves competitive or superior performance compared to existing SOTA models on various audio processing benchmarks.


BA-SOT: Boundary-Aware Serialized Output Training for Multi-Talker ASR

arXiv.org Artificial Intelligence

The recently proposed serialized output training (SOT) simplifies multi-talker automatic speech recognition (ASR) by generating speaker transcriptions separated by a special token. However, frequent speaker changes can make speaker change prediction difficult. To address this, we propose boundary-aware serialized output training (BA-SOT), which explicitly incorporates boundary knowledge into the decoder via a speaker change detection task and boundary constraint loss. We also introduce a two-stage connectionist temporal classification (CTC) strategy that incorporates token-level SOT CTC to restore temporal context information. Besides typical character error rate (CER), we introduce utterance-dependent character error rate (UD-CER) to further measure the precision of speaker change prediction. Compared to original SOT, BA-SOT reduces CER/UD-CER by 5.1%/14.0%, and leveraging a pre-trained ASR model for BA-SOT model initialization further reduces CER/UD-CER by 8.4%/19.9%.


FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

arXiv.org Artificial Intelligence

Federated learning (FL) is a distributed learning process that uses a trusted aggregation server to allow multiple parties (or clients) to collaboratively train a machine learning model without having them share their private data. Recent research, however, has demonstrated the effectiveness of inference and poisoning attacks on FL. Mitigating both attacks simultaneously is very challenging. State-of-the-art solutions have proposed the use of poisoning defenses with Secure Multi-Party Computation (SMPC) and/or Differential Privacy (DP). However, these techniques are not efficient and fail to address the malicious intent behind the attacks, i.e., adversaries (curious servers and/or compromised clients) seek to exploit a system for monetization purposes. To overcome these limitations, we present a ledger-based FL framework known as FLEDGE that allows making parties accountable for their behavior and achieve reasonable efficiency for mitigating inference and poisoning attacks. Our solution leverages crypto-currency to increase party accountability by penalizing malicious behavior and rewarding benign conduct. We conduct an extensive evaluation on four public datasets: Reddit, MNIST, Fashion-MNIST, and CIFAR-10. Our experimental results demonstrate that (1) FLEDGE provides strong privacy guarantees for model updates without sacrificing model utility; (2) FLEDGE can successfully mitigate different poisoning attacks without degrading the performance of the global model; and (3) FLEDGE offers unique reward mechanisms to promote benign behavior during model training and/or model aggregation.