Plotting

 Chen, Po-Yu


A Comprehensive Sustainable Framework for Machine Learning and Artificial Intelligence

arXiv.org Artificial Intelligence

In financial applications, regulations or best practices often lead to specific requirements in machine learning relating to four key pillars: fairness, privacy, interpretability and greenhouse gas emissions. These all sit in the broader context of sustainability in AI, an emerging practical AI topic. However, although these pillars have been individually addressed by past literature, none of these works have considered all the pillars. There are inherent trade-offs between each of the pillars (for example, accuracy vs fairness or accuracy vs privacy), making it even more important to consider them together. This paper outlines a new framework for Sustainable Machine Learning and proposes FPIG, a general AI pipeline that allows for these critical topics to be considered simultaneously to learn the trade-offs between the pillars better. Based on the FPIG framework, we propose a meta-learning algorithm to estimate the four key pillars given a dataset summary, model architecture, and hyperparameters before model training. This algorithm allows users to select the optimal model architecture for a given dataset and a given set of user requirements on the pillars. We illustrate the trade-offs under the FPIG model on three classical datasets and demonstrate the meta-learning approach with an example of real-world datasets and models with different interpretability, showcasing how it can aid model selection.


Differentially Private Fine-Tuning of Diffusion Models

arXiv.org Artificial Intelligence

The integration of Differential Privacy (DP) with diffusion models (DMs) presents a promising yet challenging frontier, particularly due to the substantial memorization capabilities of DMs that pose significant privacy risks. Differential privacy offers a rigorous framework for safeguarding individual data points during model training, with Differential Privacy Stochastic Gradient Descent (DP-SGD) being a prominent implementation. Diffusion method decomposes image generation into iterative steps, theoretically aligning well with DP's incremental noise addition. Despite the natural fit, the unique architecture of DMs necessitates tailored approaches to effectively balance privacy-utility trade-off. Recent developments in this field have highlighted the potential for generating high-quality synthetic data by pre-training on public data (i.e., ImageNet) and fine-tuning on private data, however, there is a pronounced gap in research on optimizing the trade-offs involved in DP settings, particularly concerning parameter efficiency and model scalability. Our work addresses this by proposing a parameter-efficient fine-tuning strategy optimized for private diffusion models, which minimizes the number of trainable parameters to enhance the privacy-utility trade-off. We empirically demonstrate that our method achieves state-of-the-art performance in DP synthesis, significantly surpassing previous benchmarks on widely studied datasets (e.g., with only 0.47M trainable parameters, achieving a more than 35% improvement over the previous state-of-the-art with a small privacy budget on the CelebA-64 dataset). Anonymous codes available at https://anonymous.4open.science/r/DP-LORA-F02F.


Private Training Set Inspection in MLaaS

arXiv.org Artificial Intelligence

Machine Learning as a Service (MLaaS) is a popular cloud-based solution for customers who aim to use an ML model but lack training data, computation resources, or expertise in ML. In this case, the training datasets are typically a private possession of the ML or data companies and are inaccessible to the customers, but the customers still need an approach to confirm that the training datasets meet their expectations and fulfil regulatory measures like fairness. However, no existing work addresses the above customers' concerns. This work is the first attempt to solve this problem, taking data origin as an entry point. We first define origin membership measurement and based on this, we then define diversity and fairness metrics to address customers' concerns. We then propose a strategy to estimate the values of these two metrics in the inaccessible training dataset, combining shadow training techniques from membership inference and an efficient featurization scheme in multiple instance learning. The evaluation contains an application of text review polarity classification applications based on the language BERT model. Experimental results show that our solution can achieve up to 0.87 accuracy for membership inspection and up to 99.3% confidence in inspecting diversity and fairness distribution.


Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization

arXiv.org Machine Learning

Convex optimization with sparsity-promoting convex regularization is a standard approach for estimating sparse signals in noise. In order to promote sparsity more strongly than convex regularization, it is also standard practice to employ non-convex optimization. In this paper, we take a third approach. We utilize a non-convex regularization term chosen such that the total cost function (consisting of data consistency and regularization terms) is convex. Therefore, sparsity is more strongly promoted than in the standard convex formulation, but without sacrificing the attractive aspects of convex optimization (unique minimum, robust algorithms, etc.). We use this idea to improve the recently developed 'overlapping group shrinkage' (OGS) algorithm for the denoising of group-sparse signals. The algorithm is applied to the problem of speech enhancement with favorable results in terms of both SNR and perceptual quality.