Plotting

 Chen, Pinzhen


XL-Instruct: Synthetic Data for Cross-Lingual Open-Ended Generation

arXiv.org Artificial Intelligence

Cross-lingual open-ended generation -- i.e. generating responses in a desired language different from that of the user's query -- is an important yet understudied problem. We introduce XL-AlpacaEval, a new benchmark for evaluating cross-lingual generation capabilities in Large Language Models (LLMs), and propose XL-Instruct, a high-quality synthetic data generation method. Fine-tuning with just 8K XL-Instruct-generated instructions significantly improves model performance, increasing the win rate against GPT-4o-Mini from 7.4% to 21.5%, and improving on several fine-grained quality metrics. Additionally, models fine-tuned on XL-Instruct exhibit strong zero-shot transfer to both English-only and multilingual generation tasks. Given its consistent gains across the board, we strongly recommend incorporating XL-Instruct in the post-training pipeline of future multilingual LLMs. To facilitate further research, we will publicly and freely release the XL-Instruct and XL-AlpacaEval datasets, which constitute two of the few cross-lingual resources currently available in the literature.


An Expanded Massive Multilingual Dataset for High-Performance Language Technologies

arXiv.org Artificial Intelligence

Training state-of-the-art large language models requires vast amounts of clean and diverse textual data. However, building suitable multilingual datasets remains a challenge. In this work, we present HPLT v2, a collection of high-quality multilingual monolingual and parallel corpora. The monolingual portion of the data contains 8T tokens covering 193 languages, while the parallel data contains 380M sentence pairs covering 51 languages. We document the entire data pipeline and release the code to reproduce it. We provide extensive analysis of the quality and characteristics of our data. Finally, we evaluate the performance of language models and machine translation systems trained on HPLT v2, demonstrating its value.


Generalizing From Short to Long: Effective Data Synthesis for Long-Context Instruction Tuning

arXiv.org Artificial Intelligence

Long-context modelling for large language models (LLMs) has been a key area of recent research because many real world use cases require reasoning over longer inputs such as documents. The focus of research into modelling long context has been on how to model position and there has been little investigation into other important aspects of language modelling such as instruction tuning. Long context training examples are challenging and expensive to create and use. In this paper, we investigate how to design instruction data for the post-training phase of a long context pre-trained model: how much and what type of context is needed for optimal and efficient post-training. Our controlled study reveals that models instruction-tuned on short contexts can effectively generalize to longer ones, while also identifying other critical factors such as instruction difficulty and context composition. Based on these findings, we propose context synthesis, a novel data synthesis framework that leverages off-the-shelf LLMs to generate extended background contexts for high-quality instruction-answer pairs. Experiment results on the document-level benchmark (LongBench) demonstrate that our proposed approach outperforms previous instruction synthesis approaches and comes close to the performance of human-annotated long-context instruction data. The project will be available at: https://github.com/NJUNLP/context-synthesis.


Context and System Fusion in Post-ASR Emotion Recognition with Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have started to play a vital Formally, our approach explores suitable prompting role in modelling speech and text. To explore the best use of strategies to perform speech emotion prediction from ASR context and multiple systems' outputs for post-ASR speech outputs without speech signals. Most efforts are centred on emotion prediction, we study LLM prompting on a recent creating a practical context for prompting. The contributions task named GenSEC. Our techniques include ASR transcript of this work are: ranking, variable conversation context, and system output fusion. Methodologically, we 1) select and rank ASR outputs We show that the conversation context has diminishing as LLM input using multiple metrics and 2) exploit and returns and the metric used to select the transcript for prediction fuse the conversation history and multiple ASR system is crucial.


EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models

arXiv.org Artificial Intelligence

In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks and PolyWrite, an open-ended generation benchmark developed in this study. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability.


Fine-tuning Large Language Models with Sequential Instructions

arXiv.org Artificial Intelligence

Despite the success of existing instruction-tuned models, we find that they usually struggle to respond to queries with multiple instructions. This impairs their performance in complex problems whose solution consists of multiple intermediate tasks. Thus, we contend that part of the fine-tuning data mixture should be sequential--containing a chain of interrelated tasks. We first approach sequential instruction tuning from a task-driven perspective, manually creating interpretable intermediate tasks for multilingual and visual question answering: namely "translate then predict" and "caption then answer". Next, we automate this process by turning instructions in existing datasets (e.g., Alpaca and FlanCoT) into diverse and complex sequential instructions, making our method general-purpose. Models that underwent our sequential instruction tuning show improved results in coding, maths, and open-ended generation. Moreover, we put forward a new benchmark named SeqEval to evaluate a model's ability to follow all the instructions in a sequence, which further corroborates the benefits of our fine-tuning method. We hope that our endeavours will open new research avenues on instruction tuning for complex tasks.


Crossmodal ASR Error Correction with Discrete Speech Units

arXiv.org Artificial Intelligence

ASR remains unsatisfactory in scenarios where the speaking style diverges from that used to train ASR systems, resulting in erroneous transcripts. To address this, ASR Error Correction (AEC), a post-ASR processing approach, is required. In this work, we tackle an understudied issue: the Low-Resource Out-of-Domain (LROOD) problem, by investigating crossmodal AEC on very limited downstream data with 1-best hypothesis transcription. We explore pre-training and fine-tuning strategies and uncover an ASR domain discrepancy phenomenon, shedding light on appropriate training schemes for LROOD data. Moreover, we propose the incorporation of discrete speech units to align with and enhance the word embeddings for improving AEC quality. Results from multiple corpora and several evaluation metrics demonstrate the feasibility and efficacy of our proposed AEC approach on LROOD data, as well as its generalizability and superiority on large-scale data. Finally, a study on speech emotion recognition confirms that our model produces ASR error-robust transcripts suitable for downstream applications.


Fine-Tuning Large Language Models to Translate: Will a Touch of Noisy Data in Misaligned Languages Suffice?

arXiv.org Artificial Intelligence

Traditionally, success in multilingual machine translation can be attributed to three key factors in training data: large volume, diverse translation directions, and high quality. In the current practice of fine-tuning large language models (LLMs) for translation, we revisit the importance of all these factors. We find that LLMs display strong translation capability after being fine-tuned on as few as 32 training instances, and that fine-tuning on a single translation direction effectively enables LLMs to translate in multiple directions. However, the choice of direction is critical: fine-tuning LLMs with English on the target side can lead to task misinterpretation, which hinders translations into non-English languages. A similar problem arises when noise is introduced into the target side of parallel data, especially when the target language is well-represented in the LLM's pre-training. In contrast, noise in an under-represented language has a less pronounced effect. Our findings suggest that attaining successful alignment hinges on teaching the model to maintain a "superficial" focus, thereby avoiding the learning of erroneous biases beyond translation.


Lucky 52: How Many Languages Are Needed to Instruction Fine-Tune Large Language Models?

arXiv.org Artificial Intelligence

Fine-tuning large language models for multilingual downstream tasks requires a diverse set of languages to capture the nuances and structures of different linguistic contexts effectively. While the specific number varies depending on the desired scope and target languages, we argue that the number of languages, language exposure, and similarity that incorporate the selection of languages for fine-tuning are some important aspects to examine. By fine-tuning large multilingual models on 1 to 52 languages, this paper answers one question: How many languages are needed in instruction fine-tuning for multilingual tasks? We investigate how multilingual instruction fine-tuned models behave on multilingual benchmarks with an increasing number of languages and discuss our findings from the perspective of language exposure and similarity.


UniArk: Improving Generalisation and Consistency for Factual Knowledge Extraction through Debiasing

arXiv.org Artificial Intelligence

Several recent papers have investigated the potential of language models as knowledge bases as well as the existence of severe biases when extracting factual knowledge. In this work, we focus on the factual probing performance over unseen prompts from tuning, and using a probabilistic view we show the inherent misalignment between pre-training and downstream tuning objectives in language models for probing knowledge. We hypothesize that simultaneously debiasing these objectives can be the key to generalisation over unseen prompts. We propose an adapter-based framework, UniArk, for generalised and consistent factual knowledge extraction through simple methods without introducing extra parameters. Extensive experiments show that UniArk can significantly improve the model's out-of-domain generalisation as well as consistency under various prompts. Additionally, we construct ParaTrex, a large-scale and diverse dataset for measuring the inconsistency and out-of-domain generation of models. Further, ParaTrex offers a reference method for constructing paraphrased datasets using large language models.