Chen, Nuo
Alleviating Over-smoothing for Unsupervised Sentence Representation
Chen, Nuo, Shou, Linjun, Gong, Ming, Pei, Jian, Cao, Bowen, Chang, Jianhui, Jiang, Daxin, Li, Jia
Currently, learning better unsupervised sentence representations is the pursuit of many natural language processing communities. Lots of approaches based on pre-trained language models (PLMs) and contrastive learning have achieved promising results on this task. Experimentally, we observe that the over-smoothing problem reduces the capacity of these powerful PLMs, leading to sub-optimal sentence representations. In this paper, we present a Simple method named Self-Contrastive Learning (SSCL) to alleviate this issue, which samples negatives from PLMs intermediate layers, improving the quality of the sentence representation. Our proposed method is quite simple and can be easily extended to various state-of-the-art models for performance boosting, which can be seen as a plug-and-play contrastive framework for learning unsupervised sentence representation. Extensive results prove that SSCL brings the superior performance improvements of different strong baselines (e.g., BERT and SimCSE) on Semantic Textual Similarity and Transfer datasets. Our codes are available at https://github.com/nuochenpku/SSCL.
FiTs: Fine-grained Two-stage Training for Knowledge-aware Question Answering
Ye, Qichen, Cao, Bowen, Chen, Nuo, Xu, Weiyuan, Zou, Yuexian
Knowledge-aware question answering (KAQA) requires the model to answer questions over a knowledge base, which is essential for both open-domain QA and domain-specific QA, especially when language models alone cannot provide all the knowledge needed. Despite the promising result of recent KAQA systems which tend to integrate linguistic knowledge from pre-trained language models (PLM) and factual knowledge from knowledge graphs (KG) to answer complex questions, a bottleneck exists in effectively fusing the representations from PLMs and KGs because of (i) the semantic and distributional gaps between them, and (ii) the difficulties in joint reasoning over the provided knowledge from both modalities. To address the above two problems, we propose a Fine-grained Two-stage training framework (FiTs) to boost the KAQA system performance: The first stage aims at aligning representations from the PLM and the KG, thus bridging the modality gaps between them, named knowledge adaptive post-training. The second stage, called knowledge-aware fine-tuning, aims to improve the model's joint reasoning ability based on the aligned representations. In detail, we fine-tune the post-trained model via two auxiliary self-supervised tasks in addition to the QA supervision. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMILE) domains.
Improve Retrieval-based Dialogue System via Syntax-Informed Attention
Song, Tengtao, Chen, Nuo, Jiang, Ji, Zhu, Zhihong, Zou, Yuexian
Multi-turn response selection is a challenging task due to its high demands on efficient extraction of the matching features from abundant information provided by context utterances. Since incorporating syntactic information like dependency structures into neural models can promote a better understanding of the sentences, such a method has been widely used in NLP tasks. Though syntactic information helps models achieved pleasing results, its application in retrieval-based dialogue systems has not been fully explored. Meanwhile, previous works focus on intra-sentence syntax alone, which is far from satisfactory for the task of multi-turn response where dialogues usually contain multiple sentences. To this end, we propose SIA, Syntax-Informed Attention, considering both intra- and inter-sentence syntax information. While the former restricts attention scope to only between tokens and corresponding dependents in the syntax tree, the latter allows attention in cross-utterance pairs for those syntactically important tokens. We evaluate our method on three widely used benchmarks and experimental results demonstrate the general superiority of our method on dialogue response selection.
HugNLP: A Unified and Comprehensive Library for Natural Language Processing
Wang, Jianing, Chen, Nuo, Sun, Qiushi, Huang, Wenkang, Wang, Chengyu, Gao, Ming
In this paper, we introduce HugNLP, a unified and comprehensive library for natural language processing (NLP) with the prevalent backend of HuggingFace Transformers, which is designed for NLP researchers to easily utilize off-the-shelf algorithms and develop novel methods with user-defined models and tasks in real-world scenarios. HugNLP consists of a hierarchical structure including models, processors and applications that unifies the learning process of pre-trained language models (PLMs) on different NLP tasks. Additionally, we present some featured NLP applications to show the effectiveness of HugNLP, such as knowledge-enhanced PLMs, universal information extraction, low-resource mining, and code understanding and generation, etc. The source code will be released on GitHub (https://github.com/wjn1996/HugNLP).
Bridge the Gap between Language models and Tabular Understanding
Chen, Nuo, Shou, Linjun, Gong, Ming, Pei, Jian, You, Chenyu, Chang, Jianhui, Jiang, Daxin, Li, Jia
Table pretrain-then-finetune paradigm has been proposed and employed at a rapid pace after the success of pre-training in the natural language domain. Despite the promising findings in tabular pre-trained language models (TPLMs), there is an input gap between pre-training and fine-tuning phases. For instance, TPLMs jointly pre-trained with table and text input could be effective for tasks also with table-text joint input like table question answering, but it may fail for tasks with only tables or text as input such as table retrieval. To this end, we propose UTP, an approach that dynamically supports three types of multi-modal inputs: table-text, table, and text. Specifically, UTP is pre-trained with two strategies: (1) We first utilize a universal mask language modeling objective on each kind of input, enforcing the model to adapt various inputs. (2) We then present Cross-Modal Contrastive Regularization (CMCR), which utilizes contrastive learning to encourage the consistency between table-text cross-modality representations via unsupervised instance-wise training signals during pre-training. By these means, the resulting model not only bridges the input gap between pre-training and fine-tuning but also advances in the alignment of table and text. Extensive results show UTP achieves superior results on uni-modal input tasks (e.g., table retrieval) and cross-modal input tasks (e.g., table question answering).
Human Mobility Modeling During the COVID-19 Pandemic via Deep Graph Diffusion Infomax
Liu, Yang, Rong, Yu, Guo, Zhuoning, Chen, Nuo, Xu, Tingyang, Tsung, Fugee, Li, Jia
Non-Pharmaceutical Interventions (NPIs), such as social gathering restrictions, have shown effectiveness to slow the transmission of COVID-19 by reducing the contact of people. To support policy-makers, multiple studies have first modeled human mobility via macro indicators (e.g., average daily travel distance) and then studied the effectiveness of NPIs. In this work, we focus on mobility modeling and, from a micro perspective, aim to predict locations that will be visited by COVID-19 cases. Since NPIs generally cause economic and societal loss, such a micro perspective prediction benefits governments when they design and evaluate them. However, in real-world situations, strict privacy data protection regulations result in severe data sparsity problems (i.e., limited case and location information). To address these challenges, we formulate the micro perspective mobility modeling into computing the relevance score between a diffusion and a location, conditional on a geometric graph. we propose a model named Deep Graph Diffusion Infomax (DGDI), which jointly models variables including a geometric graph, a set of diffusions and a set of locations.To facilitate the research of COVID-19 prediction, we present two benchmarks that contain geometric graphs and location histories of COVID-19 cases. Extensive experiments on the two benchmarks show that DGDI significantly outperforms other competing methods.
CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure
Chen, Nuo, Sun, Qiushi, Zhu, Renyu, Li, Xiang, Lu, Xuesong, Gao, Ming
Code pre-trained models (CodePTMs) have recently demonstrated significant success in code intelligence. To interpret these models, some probing methods have been applied. However, these methods fail to consider the inherent characteristics of codes. In this paper, to address the problem, we propose a novel probing method CAT-probing to quantitatively interpret how CodePTMs attend code structure. We first denoise the input code sequences based on the token types pre-defined by the compilers to filter those tokens whose attention scores are too small. After that, we define a new metric CAT-score to measure the commonality between the token-level attention scores generated in CodePTMs and the pair-wise distances between corresponding AST nodes. The higher the CAT-score, the stronger the ability of CodePTMs to capture code structure. We conduct extensive experiments to integrate CAT-probing with representative CodePTMs for different programming languages. Experimental results show the effectiveness of CAT-probing in CodePTM interpretation. Our codes and data are publicly available at https://github.com/nchen909/CodeAttention.
From Good to Best: Two-Stage Training for Cross-lingual Machine Reading Comprehension
Chen, Nuo, Shou, Linjun, Gong, Min, Pei, Jian, Jiang, Daxin
Cross-lingual Machine Reading Comprehension (xMRC) is challenging due to the lack of training data in low-resource languages. The recent approaches use training data only in a resource-rich language like English to fine-tune large-scale cross-lingual pre-trained language models. Due to the big difference between languages, a model fine-tuned only by a source language may not perform well for target languages. Interestingly, we observe that while the top-1 results predicted by the previous approaches may often fail to hit the ground-truth answers, the correct answers are often contained in the top-k predicted results. Based on this observation, we develop a two-stage approach to enhance the model performance. The first stage targets at recall: we design a hard-learning (HL) algorithm to maximize the likelihood that the top-k predictions contain the accurate answer. The second stage focuses on precision: an answer-aware contrastive learning (AA-CL) mechanism is developed to learn the fine difference between the accurate answer and other candidates. Our extensive experiments show that our model significantly outperforms a series of strong baselines on two cross-lingual MRC benchmark datasets.
Self-supervised Contrastive Cross-Modality Representation Learning for Spoken Question Answering
You, Chenyu, Chen, Nuo, Zou, Yuexian
Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised training stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks.
Towards Visual Explainable Active Learning for Zero-Shot Classification
Jia, Shichao, Li, Zeyu, Chen, Nuo, Zhang, Jiawan
Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attributes. Designing a suitable class-attribute matrix is the key to the subsequent procedure, but this design process is tedious and trial-and-error with no guidance. This paper proposes a visual explainable active learning approach with its design and implementation called semantic navigator to solve the above problems. This approach promotes human-AI teaming with four actions (ask, explain, recommend, respond) in each interaction loop. The machine asks contrastive questions to guide humans in the thinking process of attributes. A novel visualization called semantic map explains the current status of the machine. Therefore analysts can better understand why the machine misclassifies objects. Moreover, the machine recommends the labels of classes for each attribute to ease the labeling burden. Finally, humans can steer the model by modifying the labels interactively, and the machine adjusts its recommendations. The visual explainable active learning approach improves humans' efficiency of building zero-shot classification models interactively, compared with the method without guidance. We justify our results with user studies using the standard benchmarks for zero-shot classification.