Goto

Collaborating Authors

 Chen, Minmin


Large Language Models for User Interest Journeys

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation. Their potential for deeper user understanding and improved personalized user experience on recommendation platforms is, however, largely untapped. This paper aims to address this gap. Recommender systems today capture users' interests through encoding their historical activities on the platforms. The generated user representations are hard to examine or interpret. On the other hand, if we were to ask people about interests they pursue in their life, they might talk about their hobbies, like I just started learning the ukulele, or their relaxation routines, e.g., I like to watch Saturday Night Live, or I want to plant a vertical garden. We argue, and demonstrate through extensive experiments, that LLMs as foundation models can reason through user activities, and describe their interests in nuanced and interesting ways, similar to how a human would. We define interest journeys as the persistent and overarching user interests, in other words, the non-transient ones. These are the interests that we believe will benefit most from the nuanced and personalized descriptions. We introduce a framework in which we first perform personalized extraction of interest journeys, and then summarize the extracted journeys via LLMs, using techniques like few-shot prompting, prompt-tuning and fine-tuning. Together, our results in prompting LLMs to name extracted user journeys in a large-scale industrial platform demonstrate great potential of these models in providing deeper, more interpretable, and controllable user understanding. We believe LLM powered user understanding can be a stepping stone to entirely new user experiences on recommendation platforms that are journey-aware, assistive, and enabling frictionless conversation down the line.


Latent User Intent Modeling for Sequential Recommenders

arXiv.org Artificial Intelligence

Sequential recommender models are essential components of modern industrial recommender systems. These models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform. Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online. Intent modeling is thus critical for understanding users and optimizing long-term user experience. We propose a probabilistic modeling approach and formulate user intent as latent variables, which are inferred based on user behavior signals using variational autoencoders (VAE). The recommendation policy is then adjusted accordingly given the inferred user intent. We demonstrate the effectiveness of the latent user intent modeling via offline analyses as well as live experiments on a large-scale industrial recommendation platform.


Quantifying Long Range Dependence in Language and User Behavior to improve RNNs

arXiv.org Machine Learning

Characterizing temporal dependence patterns is a critical step in understanding the statistical properties of sequential data. Long Range Dependence (LRD) --- referring to long-range correlations decaying as a power law rather than exponentially w.r.t. distance --- demands a different set of tools for modeling the underlying dynamics of the sequential data. While it has been widely conjectured that LRD is present in language modeling and sequential recommendation, the amount of LRD in the corresponding sequential datasets has not yet been quantified in a scalable and model-independent manner. We propose a principled estimation procedure of LRD in sequential datasets based on established LRD theory for real-valued time series and apply it to sequences of symbols with million-item-scale dictionaries. In our measurements, the procedure estimates reliably the LRD in the behavior of users as they write Wikipedia articles and as they interact with YouTube. We further show that measuring LRD better informs modeling decisions in particular for RNNs whose ability to capture LRD is still an active area of research. The quantitative measure informs new Evolutive Recurrent Neural Networks (EvolutiveRNNs) designs, leading to state-of-the-art results on language understanding and sequential recommendation tasks at a fraction of the computational cost.


AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks

arXiv.org Machine Learning

Recurrent neural networks have gained widespread use in modeling sequential data. Learning long-term dependencies using these models remains difficult though, due to exploding or vanishing gradients. In this paper, we draw connections between recurrent networks and ordinary differential equations. A special form of recurrent networks called the AntisymmetricRNN is proposed under this theoretical framework, which is able to capture long-term dependencies thanks to the stability property of its underlying differential equation. Existing approaches to improving RNN trainability often incur significant computation overhead. In comparison, AntisymmetricRNN achieves the same goal by design. AntisymmetricRNN exhibits much more predictable dynamics. It outperforms regular LSTM models on tasks requiring long-term memory and matches the performance on tasks where short-term dependencies dominate despite being much simpler. Modeling complex temporal dependencies in sequential data using RNNs, especially the long-term dependencies, remains an open challenge.


Towards Neural Mixture Recommender for Long Range Dependent User Sequences

arXiv.org Machine Learning

Understanding temporal dynamics has proved to be highly valuable for accurate recommendation. Sequential recommenders have been successful in modeling the dynamics of users and items over time. However, while different model architectures excel at capturing various temporal ranges or dynamics, distinct application contexts require adapting to diverse behaviors. In this paper we examine how to build a model that can make use of different temporal ranges and dynamics depending on the request context. We begin with the analysis of an anonymized Youtube dataset comprising millions of user sequences. We quantify the degree of long-range dependence in these sequences and demonstrate that both short-term and long-term dependent behavioral patterns co-exist. We then propose a neural Multi-temporal-range Mixture Model (M3) as a tailored solution to deal with both short-term and long-term dependencies. Our approach employs a mixture of models, each with a different temporal range. These models are combined by a learned gating mechanism capable of exerting different model combinations given different contextual information. In empirical evaluations on a public dataset and our own anonymized YouTube dataset, M3 consistently outperforms state-of-the-art sequential recommendation methods.


Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs

arXiv.org Machine Learning

Training recurrent neural networks (RNNs) on long sequence tasks is plagued with difficulties arising from the exponential explosion or vanishing of signals as they propagate forward or backward through the network. Many techniques have been proposed to ameliorate these issues, including various algorithmic and architectural modifications. Two of the most successful RNN architectures, the LSTM and the GRU, do exhibit modest improvements over vanilla RNN cells, but they still suffer from instabilities when trained on very long sequences. In this work, we develop a mean field theory of signal propagation in LSTMs and GRUs that enables us to calculate the time scales for signal propagation as well as the spectral properties of the state-to-state Jacobians. By optimizing these quantities in terms of the initialization hyperparameters, we derive a novel initialization scheme that eliminates or reduces training instabilities. We demonstrate the efficacy of our initialization scheme on multiple sequence tasks, on which it enables successful training while a standard initialization either fails completely or is orders of magnitude slower. We also observe a beneficial effect on generalization performance using this new initialization.


Top-K Off-Policy Correction for a REINFORCE Recommender System

arXiv.org Machine Learning

Industrial recommender systems deal with extremely large action spaces -- many millions of items to recommend. Moreover, they need to serve billions of users, who are unique at any point in time, making a complex user state space. Luckily, huge quantities of logged implicit feedback (e.g., user clicks, dwell time) are available for learning. Learning from the logged feedback is however subject to biases caused by only observing feedback on recommendations selected by the previous versions of the recommender. In this work, we present a general recipe of addressing such biases in a production top-K recommender system at Youtube, built with a policy-gradient-based algorithm, i.e. REINFORCE. The contributions of the paper are: (1) scaling REINFORCE to a production recommender system with an action space on the orders of millions; (2) applying off-policy correction to address data biases in learning from logged feedback collected from multiple behavior policies; (3) proposing a novel top-K off-policy correction to account for our policy recommending multiple items at a time; (4) showcasing the value of exploration. We demonstrate the efficacy of our approaches through a series of simulations and multiple live experiments on Youtube.


Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks

arXiv.org Machine Learning

Recurrent neural networks have gained widespread use in modeling sequence data across various domains. While many successful recurrent architectures employ a notion of gating, the exact mechanism that enables such remarkable performance is not well understood. We develop a theory for signal propagation in recurrent networks after random initialization using a combination of mean field theory and random matrix theory. To simplify our discussion, we introduce a new RNN cell with a simple gating mechanism that we call the minimalRNN and compare it with vanilla RNNs. Our theory allows us to define a maximum timescale over which RNNs can remember an input. We show that this theory predicts trainability for both recurrent architectures. We show that gated recurrent networks feature a much broader, more robust, trainable region than vanilla RNNs, which corroborates recent experimental findings. Finally, we develop a closed-form critical initialization scheme that achieves dynamical isometry in both vanilla RNNs and minimalRNNs. We show that this results in significantly improvement in training dynamics. Finally, we demonstrate that the minimalRNN achieves comparable performance to its more complex counterparts, such as LSTMs or GRUs, on a language modeling task.


MinimalRNN: Toward More Interpretable and Trainable Recurrent Neural Networks

arXiv.org Machine Learning

We introduce MinimalRNN, a new recurrent neural network architecture that achieves comparable performance as the popular gated RNNs with a simplified structure. It employs minimal updates within RNN, which not only leads to efficient learning and testing but more importantly better interpretability and trainability. We demonstrate that by endorsing the more restrictive update rule, MinimalRNN learns disentangled RNN states. We further examine the learning dynamics of different RNN structures using input-output Jacobians, and show that MinimalRNN is able to capture longer range dependencies than existing RNN architectures.


Marginalized Denoising for Link Prediction and Multi-Label Learning

AAAI Conferences

Link prediction and multi-label learning on graphs are two important but challenging machine learning problems that have broad applications in diverse fields. Not only are the two problems inherently correlated and often appear concurrently, they are also exacerbated by incomplete data. We develop a novel algorithm to solve these two problems jointly under a unified framework, which helps reduce the impact of graph noise and benefits both tasks individually. We reduce multi-label learning problem into an additional link prediction task and solve both problems with marginalized denoising, which we co-regularize with Laplacian smoothing. This approach combines both learning tasks into a single convex objective function, which we optimize efficiently with iterative closed-form updates. The resulting approach performs significantly better than prior work on several important real-world applications with great consistency.