Not enough data to create a plot.
Try a different view from the menu above.
Chen, Lin
A wearable Gait Assessment Method for Lumbar Disc Herniation Based on Adaptive Kalman Filtering
Wang, Yongsong, Li, Zhixin, Guo, Zhaohui, Ding, Yin, Huan, Zhan, Chen, Lin
Lumbar disc herniation (LDH) is a prevalent orthopedic condition in clinical practice. Inertial measurement unit sensors (IMUs) are an effective tool for monitoring and assessing gait impairment in patients with lumbar disc herniation (LDH). However, the current gait assessment of LDH focuses solely on single-source acceleration signal data, without considering the diversity of sensor data. It also overlooks the individual differences in motor function deterioration between the healthy and affected lower limbs in patients with LDH. To address this issue, we developed an LDH gait feature model that relies on multi-source adaptive Kalman data fusion of acceleration and angular velocity. We utilized an adaptive Kalman data fusion algorithm for acceleration and angular velocity to estimate the attitude angle and segment the gait phase. Two Inertial Measurement Units (IMUs) were used to analyze the gait characteristics of patients with lumbar disc issues and healthy individuals. This analysis included 12 gait characteristics, such as gait spatiotemporal parameters, kinematic parameters, and expansibility index numbers. Statistical methods were employed to analyze the characteristic model and confirm the biological differences between the healthy affected side of LDH and healthy subjects. Finally, a classifier based on feature engineering was utilized to classify the gait patterns of the affected side of patients with lumbar disc disease and healthy subjects. This approach achieved a classification accuracy of 95.50%, enhancing the recognition of LDH and healthy gait patterns. It also provided effective gait feature sets and methods for assessing LDH clinically.
FreeDrag: Feature Dragging for Reliable Point-based Image Editing
Ling, Pengyang, Chen, Lin, Zhang, Pan, Chen, Huaian, Jin, Yi, Zheng, Jinjin
To serve the intricate and varied demands of image editing, precise and flexible manipulation in image content is indispensable. Recently, Drag-based editing methods have gained impressive performance. However, these methods predominantly center on point dragging, resulting in two noteworthy drawbacks, namely "miss tracking", where difficulties arise in accurately tracking the predetermined handle points, and "ambiguous tracking", where tracked points are potentially positioned in wrong regions that closely resemble the handle points. To address the above issues, we propose FreeDrag, a feature dragging methodology designed to free the burden on point tracking. The FreeDrag incorporates two key designs, i.e., template feature via adaptive updating and line search with backtracking, the former improves the stability against drastic content change by elaborately controls feature updating scale after each dragging, while the latter alleviates the misguidance from similar points by actively restricting the search area in a line. These two technologies together contribute to a more stable semantic dragging with higher efficiency. Comprehensive experimental results substantiate that our approach significantly outperforms pre-existing methodologies, offering reliable point-based editing even in various complex scenarios.
CurriculumLoc: Enhancing Cross-Domain Geolocalization through Multi-Stage Refinement
Hu, Boni, Chen, Lin, Chen, Runjian, Bu, Shuhui, Han, Pengcheng, Li, Haowei
Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geo-tagged reference images. Existing methods, devoted to semantic features representation, evolving towards robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multi-stage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code and trained models are publicly available on https://github.com/npupilab/CurriculumLoc.
Greedy PIG: Adaptive Integrated Gradients
Axiotis, Kyriakos, Abu-al-haija, Sami, Chen, Lin, Fahrbach, Matthew, Fu, Gang
Deep learning has become the standard approach for most machine learning tasks. While its impact is undeniable, interpreting the predictions of deep learning models from a human perspective remains a challenge. In contrast to model training, model interpretability is harder to quantify and pose as an explicit optimization problem. Inspired by the AUC softmax information curve (AUC SIC) metric for evaluating feature attribution methods, we propose a unified discrete optimization framework for feature attribution and feature selection based on subset selection. This leads to a natural adaptive generalization of the path integrated gradients (PIG) method for feature attribution, which we call Greedy PIG. We demonstrate the success of Greedy PIG on a wide variety of tasks, including image feature attribution, graph compression/explanation, and post-hoc feature selection on tabular data. Our results show that introducing adaptivity is a powerful and versatile method for making attribution methods more powerful.
It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep Models
Chen, Lin, Lukasik, Michal, Jitkrittum, Wittawat, You, Chong, Kumar, Sanjiv
The concepts of bias and variance, obtained from decomposing the generalization error, are of fundamental importance in machine learning. Classical wisdom suggests that there is a trade-off between bias and variance: models of low capacity have high bias and low variance, while models of high capacity have low bias and high variance. This understanding served as an important guiding principle for developing generalizable machine learning models, suggesting that they should be neither too large nor too small [Bishop, 2006]. Recently, a line of research found that deep models defy this classical wisdom [Belkin et al., 2019]: their variance curves exhibit a unimodal shape that first increases with model size, then decreases beyond the point that the models can perfectly fit the training data [Neal et al., 2018, Yang et al., 2020]. While the unimodal variance curve explains why over-parameterized deep models generalize well, there is still a lack of understanding on why it occurs. This paper revisits the study of bias and variance to understand their behavior in deep models. We perform a per-sample measurement of bias and variance in popular deep classification models. Our study reveals a curious phenomenon, which is radically different from the classical tradeoff perspective on bias-variance, while is concordant with more recent works [Belkin et al., 2019, Hastie et al., 2022, Mei and Montanari, 2022].
Roulette: A Semantic Privacy-Preserving Device-Edge Collaborative Inference Framework for Deep Learning Classification Tasks
Li, Jingyi, Liao, Guocheng, Chen, Lin, Chen, Xu
Deep learning classifiers are crucial in the age of artificial intelligence. The device-edge-based collaborative inference has been widely adopted as an efficient framework for promoting its applications in IoT and 5G/6G networks. However, it suffers from accuracy degradation under non-i.i.d. data distribution and privacy disclosure. For accuracy degradation, direct use of transfer learning and split learning is high cost and privacy issues remain. For privacy disclosure, cryptography-based approaches lead to a huge overhead. Other lightweight methods assume that the ground truth is non-sensitive and can be exposed. But for many applications, the ground truth is the user's crucial privacy-sensitive information. In this paper, we propose a framework of Roulette, which is a task-oriented semantic privacy-preserving collaborative inference framework for deep learning classifiers. More than input data, we treat the ground truth of the data as private information. We develop a novel paradigm of split learning where the back-end DNN is frozen and the front-end DNN is retrained to be both a feature extractor and an encryptor. Moreover, we provide a differential privacy guarantee and analyze the hardness of ground truth inference attacks. To validate the proposed Roulette, we conduct extensive performance evaluations using realistic datasets, which demonstrate that Roulette can effectively defend against various attacks and meanwhile achieve good model accuracy. In a situation where the non-i.i.d. is very severe, Roulette improves the inference accuracy by 21\% averaged over benchmarks, while making the accuracy of discrimination attacks almost equivalent to random guessing.
Efficient Commercial Bank Customer Credit Risk Assessment Based on LightGBM and Feature Engineering
Sun, Yanjie, Gong, Zhike, Shi, Quan, Chen, Lin
Effective control of credit risk is a key link in the steady operation of commercial banks. This paper is mainly based on the customer information dataset of a foreign commercial bank in Kaggle, and we use LightGBM algorithm to build a classifier to classify customers, to help the bank judge the possibility of customer credit default. This paper mainly deals with characteristic engineering, such as missing value processing, coding, imbalanced samples, etc., which greatly improves the machine learning effect. The main innovation of this paper is to construct new feature attributes on the basis of the original dataset so that the accuracy of the classifier reaches 0.734, and the AUC reaches 0.772, which is more than many classifiers based on the same dataset. The model can provide some reference for commercial banks' credit granting, and also provide some feature processing ideas for other similar studies.
Imbalanced Large Graph Learning Framework for FPGA Logic Elements Packing Prediction
Di, Zhixiong, Tao, Runzhe, Chen, Lin, Wu, Qiang, Lin, Yibo
Packing is a required step in a typical FPGA CAD flow. It has high impacts to the performance of FPGA placement and routing. Early prediction of packing results can guide design optimization and expedite design closure. In this work, we propose an imbalanced large graph learning framework, ImLG, for prediction of whether logic elements will be packed after placement. Specifically, we propose dedicated feature extraction and feature aggregation methods to enhance the node representation learning of circuit graphs. With imbalanced distribution of packed and unpacked logic elements, we further propose techniques such as graph oversampling and mini-batch training for this imbalanced learning task in large circuit graphs. Experimental results demonstrate that our framework can improve the F1 score by 42.82% compared to the most recent Gaussian-based prediction method. Physical design results show that the proposed method can assist the placer in improving routed wirelength by 0.93% and SLICE occupation by 0.89%.
GATraj: A Graph- and Attention-based Multi-Agent Trajectory Prediction Model
Cheng, Hao, Liu, Mengmeng, Chen, Lin, Broszio, Hellward, Sester, Monika, Yang, Michael Ying
Trajectory prediction has been a long-standing problem in intelligent systems like autonomous driving and robot navigation. Models trained on large-scale benchmarks have made significant progress in improving prediction accuracy. However, the importance on efficiency for real-time applications has been less emphasized. This paper proposes an attention-based graph model, named GATraj, which achieves a good balance of prediction accuracy and inference speed. We use attention mechanisms to model the spatial-temporal dynamics of agents, such as pedestrians or vehicles, and a graph convolutional network to model their interactions. Additionally, a Laplacian mixture decoder is implemented to mitigate mode collapse and generate diverse multimodal predictions for each agent. GATraj achieves state-of-the-art prediction performance at a much higher speed when tested on the ETH/UCY datasets for pedestrian trajectories, and good performance at about 100 Hz inference speed when tested on the nuScenes dataset for autonomous driving. We conduct extensive experiments to analyze the probability estimation of the Laplacian mixture decoder and compare it with a Gaussian mixture decoder for predicting different multimodalities. Furthermore, comprehensive ablation studies demonstrate the effectiveness of each proposed module in GATraj. The code is released at https://github.com/mengmengliu1998/GATraj.
Learning from Aggregated Data: Curated Bags versus Random Bags
Chen, Lin, Fu, Gang, Karbasi, Amin, Mirrokni, Vahab
Protecting user privacy is a major concern for many machine learning systems that are deployed at scale and collect from a diverse set of population. One way to address this concern is by collecting and releasing data labels in an aggregated manner so that the information about a single user is potentially combined with others. In this paper, we explore the possibility of training machine learning models with aggregated data labels, rather than individual labels. Specifically, we consider two natural aggregation procedures suggested by practitioners: curated bags where the data points are grouped based on common features and random bags where the data points are grouped randomly in bag of similar sizes. For the curated bag setting and for a broad range of loss functions, we show that we can perform gradient-based learning without any degradation in performance that may result from aggregating data. Our method is based on the observation that the sum of the gradients of the loss function on individual data examples in a curated bag can be computed from the aggregate label without the need for individual labels. For the random bag setting, we provide a generalization risk bound based on the Rademacher complexity of the hypothesis class and show how empirical risk minimization can be regularized to achieve the smallest risk bound. In fact, in the random bag setting, there is a trade-off between size of the bag and the achievable error rate as our bound indicates. Finally, we conduct a careful empirical study to confirm our theoretical findings. In particular, our results suggest that aggregate learning can be an effective method for preserving user privacy while maintaining model accuracy.