Plotting

 Chen, Liming


HAR-DoReMi: Optimizing Data Mixture for Self-Supervised Human Activity Recognition Across Heterogeneous IMU Datasets

arXiv.org Artificial Intelligence

Cross-dataset Human Activity Recognition (HAR) suffers from limited model generalization, hindering its practical deployment. To address this critical challenge, inspired by the success of DoReMi in Large Language Models (LLMs), we introduce a data mixture optimization strategy for pre-training HAR models, aiming to improve the recognition performance across heterogeneous datasets. However, directly applying DoReMi to the HAR field encounters new challenges due to the continuous, multi-channel and intrinsic heterogeneous characteristics of IMU sensor data. To overcome these limitations, we propose a novel framework HAR-DoReMi, which introduces a masked reconstruction task based on Mean Squared Error (MSE) loss. By raplacing the discrete language sequence prediction task, which relies on the Negative Log-Likelihood (NLL) loss, in the original DoReMi framework, the proposed framework is inherently more appropriate for handling the continuous and multi-channel characteristics of IMU data. In addition, HAR-DoReMi integrates the Mahony fusion algorithm into the self-supervised HAR pre-training, aiming to mitigate the heterogeneity of varying sensor orientation. This is achieved by estimating the sensor orientation within each dataset and facilitating alignment with a unified coordinate system, thereby improving the cross-dataset generalization ability of the HAR model. Experimental evaluation on multiple cross-dataset HAR transfer tasks demonstrates that HAR-DoReMi improves the accuracy by an average of 6.51%, compared to the current state-of-the-art method with only approximately 30% to 50% of the data usage. These results confirm the effectiveness of HAR-DoReMi in improving the generalization and data efficiency of pre-training HAR models, underscoring its significant potential to facilitate the practical deployment of HAR technology.


PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning

arXiv.org Artificial Intelligence

Class-incremental learning (CIL) for time series data faces critical challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition, particularly under real-world constraints where historical data access is restricted. While pre-trained models (PTMs) have shown promise in CIL for vision and NLP domains, their potential in time series class-incremental learning (TSCIL) remains underexplored due to the scarcity of large-scale time series pre-trained models. Prompted by the recent emergence of large-scale pre-trained models (PTMs) for time series data, we present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL). Our approach leverages frozen PTM backbones coupled with incrementally tuning the shared adapter, preserving generalization capabilities while mitigating feature drift through knowledge distillation. Furthermore, we introduce a Feature Drift Compensation Network (DCN), designed with a novel two-stage training strategy to precisely model feature space transformations across incremental tasks. This allows for accurate projection of old class prototypes into the new feature space. By employing DCN-corrected prototypes, we effectively enhance the unified classifier retraining, mitigating model feature drift and alleviating catastrophic forgetting. Extensive experiments on five real-world datasets demonstrate state-of-the-art performance, with our method yielding final accuracy gains of 1.4%-6.1% across all datasets compared to existing PTM-based approaches. Our work establishes a new paradigm for TSCIL, providing insights into stability-plasticity optimization for continual learning systems.


Beyond Batch Learning: Global Awareness Enhanced Domain Adaptation

arXiv.org Artificial Intelligence

In domain adaptation (DA), the effectiveness of deep learning-based models is often constrained by batch learning strategies that fail to fully apprehend the global statistical and geometric characteristics of data distributions. Addressing this gap, we introduce 'Global Awareness Enhanced Domain Adaptation' (GAN-DA), a novel approach that transcends traditional batch-based limitations. GAN-DA integrates a unique predefined feature representation (PFR) to facilitate the alignment of cross-domain distributions, thereby achieving a comprehensive global statistical awareness. This representation is innovatively expanded to encompass orthogonal and common feature aspects, which enhances the unification of global manifold structures and refines decision boundaries for more effective DA. Our extensive experiments, encompassing 27 diverse cross-domain image classification tasks, demonstrate GAN-DA's remarkable superiority, outperforming 24 established DA methods by a significant margin. Furthermore, our in-depth analyses shed light on the decision-making processes, revealing insights into the adaptability and efficiency of GAN-DA. This approach not only addresses the limitations of existing DA methodologies but also sets a new benchmark in the realm of domain adaptation, offering broad implications for future research and applications in this field.


MCTS-SQL: An Effective Framework for Text-to-SQL with Monte Carlo Tree Search

arXiv.org Artificial Intelligence

Text-to-SQL is a fundamental and longstanding problem in the NLP area, aiming at converting natural language queries into SQL, enabling non-expert users to operate databases. Recent advances in LLM have greatly improved text-to-SQL performance. However, challenges persist, especially when dealing with complex user queries. Current approaches (e.g., COT prompting and multi-agent frameworks) rely on the ability of models to plan and generate SQL autonomously, but controlling performance remains difficult. In addition, LLMs are still prone to hallucinations. To alleviate these challenges, we designed a novel MCTS-SQL to guide SQL generation iteratively. The approach generates SQL queries through Monte Carlo Tree Search (MCTS) and a heuristic self-refinement mechanism are used to enhance accuracy and reliability. Key components include a schema selector for extracting relevant information and an MCTS-based generator for iterative query refinement. Experimental results from the SPIDER and BIRD benchmarks show that MCTS-SQL achieves state-of-the-art performance. Specifically, on the BIRD development dataset, MCTS-SQL achieves an Execution (EX) accuracy of 69.40% using GPT-4o as the base model and a significant improvement when dealing with challenging tasks, with an EX of 51.48%, which is 3.41% higher than the existing method.


ReLU-KAN: New Kolmogorov-Arnold Networks that Only Need Matrix Addition, Dot Multiplication, and ReLU

arXiv.org Artificial Intelligence

Limited by the complexity of basis function (B-spline) calculations, Kolmogorov-Arnold Networks (KAN) suffer from restricted parallel computing capability on GPUs. This paper proposes a novel ReLU-KAN implementation that inherits the core idea of KAN. By adopting ReLU (Rectified Linear Unit) and point-wise multiplication, we simplify the design of KAN's basis function and optimize the computation process for efficient CUDA computing. The proposed ReLU-KAN architecture can be readily implemented on existing deep learning frameworks (e.g., PyTorch) for both inference and training. Experimental results demonstrate that ReLU-KAN achieves a 20x speedup compared to traditional KAN with 4-layer networks. Furthermore, ReLU-KAN exhibits a more stable training process with superior fitting ability while preserving the "catastrophic forgetting avoidance" property of KAN. You can get the code in https://github.com/quiqi/relu_kan


FLOW: Fusing and Shuffling Global and Local Views for Cross-User Human Activity Recognition with IMUs

arXiv.org Artificial Intelligence

Inertial Measurement Unit (IMU) sensors are widely employed for Human Activity Recognition (HAR) due to their portability, energy efficiency, and growing research interest. However, a significant challenge for IMU-HAR models is achieving robust generalization performance across diverse users. This limitation stems from substantial variations in data distribution among individual users. One primary reason for this distribution disparity lies in the representation of IMU sensor data in the local coordinate system, which is susceptible to subtle user variations during IMU wearing. To address this issue, we propose a novel approach that extracts a global view representation based on the characteristics of IMU data, effectively alleviating the data distribution discrepancies induced by wearing styles. To validate the efficacy of the global view representation, we fed both global and local view data into model for experiments. The results demonstrate that global view data significantly outperforms local view data in cross-user experiments. Furthermore, we propose a Multi-view Supervised Network (MVFNet) based on Shuffling to effectively fuse local view and global view data. It supervises the feature extraction of each view through view division and view shuffling, so as to avoid the model ignoring important features as much as possible. Extensive experiments conducted on OPPORTUNITY and PAMAP2 datasets demonstrate that the proposed algorithm outperforms the current state-of-the-art methods in cross-user HAR.


HARMamba: Efficient Wearable Sensor Human Activity Recognition Based on Bidirectional Selective SSM

arXiv.org Artificial Intelligence

Wearable sensor-based human activity recognition (HAR) is a critical research domain in activity perception. However, achieving high efficiency and long sequence recognition remains a challenge. Despite the extensive investigation of temporal deep learning models, such as CNNs, RNNs, and transformers, their extensive parameters often pose significant computational and memory constraints, rendering them less suitable for resource-constrained mobile health applications. This study introduces HARMamba, an innovative light-weight and versatile HAR architecture that combines selective bidirectional SSM and hardware-aware design. To optimize real-time resource consumption in practical scenarios, HARMamba employs linear recursive mechanisms and parameter discretization, allowing it to selectively focus on relevant input sequences while efficiently fusing scan and recompute operations. To address potential issues with invalid sensor data, the system processes the data stream through independent channels, dividing each channel into "patches" and appending classification token to the end of the sequence. Position embeddings are incorporated to represent the sequence order, and the activity categories are output through a classification header. The HARMamba Block serves as the fundamental component of the HARMamba architecture, enabling the effective capture of more discriminative activity sequence features. HARMamba outperforms contemporary state-of-the-art frameworks, delivering comparable or better accuracy with significantly reducing computational and memory demands. It's effectiveness has been extensively validated on public datasets like PAMAP2, WISDM, UNIMIB SHAR and UCI, showcasing impressive results.


MCformer: Multivariate Time Series Forecasting with Mixed-Channels Transformer

arXiv.org Artificial Intelligence

In previous models, there was a predominant use of the Channel Dependence (CD) strategy (where each channel represents a univariate sequence). Current state-of-the-art (SOTA) models primarily rely on the Channel Independence (CI) strategy. The CI strategy treats all channels as a single channel, expanding the dataset to improve generalization performance and avoiding inter-channel correlation that disrupts long-term features. However, the CI strategy faces the challenge of interchannel correlation forgetting. To address this issue, we propose an innovative Mixed Channels strategy, combining the data expansion advantages of the CI strategy with the ability to counteract inter-channel correlation forgetting. Based on this strategy, we introduce MCformer, a multivariate time-series forecasting model with mixed channel features. The model blends a specific number of channels, leveraging an attention mechanism to effectively capture inter-channel correlation information when modeling long-term features. Experimental results demonstrate that the Mixed Channels strategy outperforms pure CI strategy in multivariate time-series forecasting tasks.


P2LHAP:Wearable sensor-based human activity recognition, segmentation and forecast through Patch-to-Label Seq2Seq Transformer

arXiv.org Artificial Intelligence

Traditional deep learning methods struggle to simultaneously segment, recognize, and forecast human activities from sensor data. This limits their usefulness in many fields such as healthcare and assisted living, where real-time understanding of ongoing and upcoming activities is crucial. This paper introduces P2LHAP, a novel Patch-to-Label Seq2Seq framework that tackles all three tasks in a efficient single-task model. P2LHAP divides sensor data streams into a sequence of "patches", served as input tokens, and outputs a sequence of patch-level activity labels including the predicted future activities. A unique smoothing technique based on surrounding patch labels, is proposed to identify activity boundaries accurately. Additionally, P2LHAP learns patch-level representation by sensor signal channel-independent Transformer encoders and decoders. All channels share embedding and Transformer weights across all sequences. Evaluated on three public datasets, P2LHAP significantly outperforms the state-of-the-art in all three tasks, demonstrating its effectiveness and potential for real-world applications.


GAPS: Geometry-Aware, Physics-Based, Self-Supervised Neural Garment Draping

arXiv.org Artificial Intelligence

Recent neural, physics-based modeling of garment deformations allows faster and visually aesthetic results as opposed to the existing methods. Material-specific parameters are used by the formulation to control the garment inextensibility. This delivers unrealistic results with physically implausible stretching. Oftentimes, the draped garment is pushed inside the body which is either corrected by an expensive post-processing, thus adding to further inconsistent stretching; or by deploying a separate training regime for each body type, restricting its scalability. Additionally, the flawed skinning process deployed by existing methods produces incorrect results on loose garments. In this paper, we introduce a geometrical constraint to the existing formulation that is collision-aware and imposes garment inextensibility wherever possible. Thus, we obtain realistic results where draped clothes stretch only while covering bigger body regions. Furthermore, we propose a geometry-aware garment skinning method by defining a body-garment closeness measure which works for all garment types, especially the loose ones.