Plotting

 Chen, Jiaoyan


Untargeted Adversarial Attack on Knowledge Graph Embeddings

arXiv.org Artificial Intelligence

Knowledge graph embedding (KGE) methods have achieved great success in handling various knowledge graph (KG) downstream tasks. However, KGE methods may learn biased representations on low-quality KGs that are prevalent in the real world. Some recent studies propose adversarial attacks to investigate the vulnerabilities of KGE methods, but their attackers are target-oriented with the KGE method and the target triples to predict are given in advance, which lacks practicability. In this work, we explore untargeted attacks with the aim of reducing the global performances of KGE methods over a set of unknown test triples and conducting systematic analyses on KGE robustness. Considering logic rules can effectively summarize the global structure of a KG, we develop rule-based attack strategies to enhance the attack efficiency. In particular,we consider adversarial deletion which learns rules, applying the rules to score triple importance and delete important triples, and adversarial addition which corrupts the learned rules and applies them for negative triples as perturbations. Extensive experiments on two datasets over three representative classes of KGE methods demonstrate the effectiveness of our proposed untargeted attacks in diminishing the link prediction results. And we also find that different KGE methods exhibit different robustness to untargeted attacks. For example, the robustness of methods engaged with graph neural networks and logic rules depends on the density of the graph. But rule-based methods like NCRL are easily affected by adversarial addition attacks to capture negative rules


Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with Domain Hybrid Data

arXiv.org Artificial Intelligence

Augmenting Large Language Models (LLMs) for Question Answering (QA) with domain specific data has attracted wide attention. However, domain data often exists in a hybrid format, including text and semi-structured tables, posing challenges for the seamless integration of information. Table-to-Text Generation is a promising solution by facilitating the transformation of hybrid data into a uniformly text-formatted corpus. Although this technique has been widely studied by the NLP community, there is currently no comparative analysis on how corpora generated by different table-to-text methods affect the performance of QA systems. In this paper, we address this research gap in two steps. First, we innovatively integrate table-to-text generation into the framework of enhancing LLM-based QA systems with domain hybrid data. Then, we utilize this framework in real-world industrial data to conduct extensive experiments on two types of QA systems (DSFT and RAG frameworks) with four representative methods: Markdown format, Template serialization, TPLM-based method, and LLM-based method. Based on the experimental results, we draw some empirical findings and explore the underlying reasons behind the success of some methods. We hope the findings of this work will provide a valuable reference for the academic and industrial communities in developing robust QA systems.


HGT: Leveraging Heterogeneous Graph-enhanced Large Language Models for Few-shot Complex Table Understanding

arXiv.org Artificial Intelligence

Table understanding (TU) has achieved promising advancements, but it faces the challenges of the scarcity of manually labeled tables and the presence of complex table structures.To address these challenges, we propose HGT, a framework with a heterogeneous graph (HG)-enhanced large language model (LLM) to tackle few-shot TU tasks.It leverages the LLM by aligning the table semantics with the LLM's parametric knowledge through soft prompts and instruction turning and deals with complex tables by a multi-task pre-training scheme involving three novel multi-granularity self-supervised HG pre-training objectives.We empirically demonstrate the effectiveness of HGT, showing that it outperforms the SOTA for few-shot complex TU on several benchmarks.


The Power of Noise: Toward a Unified Multi-modal Knowledge Graph Representation Framework

arXiv.org Artificial Intelligence

The advancement of Multi-modal Pre-training highlights the necessity for a robust Multi-Modal Knowledge Graph (MMKG) representation learning framework. This framework is crucial for integrating structured knowledge into multi-modal Large Language Models (LLMs) at scale, aiming to alleviate issues like knowledge misconceptions and multi-modal hallucinations. In this work, to evaluate models' ability to accurately embed entities within MMKGs, we focus on two widely researched tasks: Multi-modal Knowledge Graph Completion (MKGC) and Multi-modal Entity Alignment (MMEA). Building on this foundation, we propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking for the robust integration of multi-modal entity features in KGs. By incorporating specific training objectives for both MKGC and MMEA, our approach achieves SOTA performance across a total of ten datasets (three for MKGC and seven for MEMA), demonstrating its robustness and versatility. Besides, SNAG can not only function as a standalone model but also enhance other existing methods, providing stable performance improvements. Our code and data are available at: https://github.com/zjukg/SNAG.


A Language Model based Framework for New Concept Placement in Ontologies

arXiv.org Artificial Intelligence

We investigate the task of inserting new concepts extracted from texts into an ontology using language models. We explore an approach with three steps: edge search which is to find a set of candidate locations to insert (i.e., subsumptions between concepts), edge formation and enrichment which leverages the ontological structure to produce and enhance the edge candidates, and edge selection which eventually locates the edge to be placed into. In all steps, we propose to leverage neural methods, where we apply embedding-based methods and contrastive learning with Pre-trained Language Models (PLMs) such as BERT for edge search, and adapt a BERT fine-tuning-based multi-label Edge-Cross-encoder, and Large Language Models (LLMs) such as GPT series, FLAN-T5, and Llama 2, for edge selection. We evaluate the methods on recent datasets created using the SNOMED CT ontology and the MedMentions entity linking benchmark. The best settings in our framework use fine-tuned PLM for search and a multi-label Cross-encoder for selection. Zero-shot prompting of LLMs is still not adequate for the task, and we propose explainable instruction tuning of LLMs for improved performance. Our study shows the advantages of PLMs and highlights the encouraging performance of LLMs that motivates future studies.


Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

arXiv.org Artificial Intelligence

Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.


Knowledge-Aware Neuron Interpretation for Scene Classification

arXiv.org Artificial Intelligence

Although neural models have achieved remarkable performance, they still encounter doubts due to the intransparency. To this end, model prediction explanation is attracting more and more attentions. However, current methods rarely incorporate external knowledge and still suffer from three limitations: (1) Neglecting concept completeness. Merely selecting concepts may not sufficient for prediction. (2) Lacking concept fusion. Failure to merge semantically-equivalent concepts. (3) Difficult in manipulating model behavior. Lack of verification for explanation on original model. To address these issues, we propose a novel knowledge-aware neuron interpretation framework to explain model predictions for image scene classification. Specifically, for concept completeness, we present core concepts of a scene based on knowledge graph, ConceptNet, to gauge the completeness of concepts. Our method, incorporating complete concepts, effectively provides better prediction explanations compared to baselines. Furthermore, for concept fusion, we introduce a knowledge graph-based method known as Concept Filtering, which produces over 23% point gain on neuron behaviors for neuron interpretation. At last, we propose Model Manipulation, which aims to study whether the core concepts based on ConceptNet could be employed to manipulate model behavior. The results show that core concepts can effectively improve the performance of original model by over 26%.


Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs

arXiv.org Artificial Intelligence

The attribution of question answering is to provide citations for supporting generated statements, and has attracted wide research attention. The current methods for automatically evaluating the attribution, which are often based on Large Language Models (LLMs), are still inadequate, particularly in recognizing subtle differences between attributions, and complex relationships between citations and statements. To compare these attribution evaluation methods and develop new ones, we introduce a set of fine-grained categories (i.e., supportive, insufficient, contradictory and irrelevant) for measuring the attribution, and develop a Complex Attributed Question Answering (CAQA) benchmark by leveraging knowledge graphs (KGs) for automatically generating attributions of different categories to question-answer pairs. Our analysis reveals that existing evaluators perform poorly under fine-grained attribution settings and exhibit weaknesses in complex citation-statement reasoning. Our CAQA benchmark, validated with human annotations, emerges as a promising tool for selecting and developing LLM attribution evaluators.


Language Models as Hierarchy Encoders

arXiv.org Artificial Intelligence

Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by re-training on hyperbolic cluster and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained and fine-tuned LMs, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform both pre-trained and fine-tuned LMs in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.


Embedding Ontologies via Incoprorating Extensional and Intensional Knowledge

arXiv.org Artificial Intelligence

Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.