Chen, Jiangjie
Unsupervised Explanation Generation via Correct Instantiations
Cheng, Sijie, Wu, Zhiyong, Chen, Jiangjie, Li, Zhixing, Liu, Yang, Kong, Lingpeng
While large pre-trained language models (PLM) have shown their great skills at solving discriminative tasks, a significant gap remains when compared with humans for explanation-related tasks. Among them, explaining the reason why a statement is wrong (e.g., against commonsense) is incredibly challenging. The major difficulty is finding the conflict point, where the statement contradicts our real world. This paper proposes Neon, a two-phrase, unsupervised explanation generation framework. Neon first generates corrected instantiations of the statement (phase I), then uses them to prompt large PLMs to find the conflict point and complete the explanation (phase II). We conduct extensive experiments on two standard explanation benchmarks, i.e., ComVE and e-SNLI. According to both automatic and human evaluations, Neon outperforms baselines, even for those with human-annotated instantiations. In addition to explaining a negative prediction, we further demonstrate that Neon remains effective when generalizing to different scenarios.
Unsupervised Editing for Counterfactual Stories
Chen, Jiangjie, Gan, Chun, Cheng, Sijie, Zhou, Hao, Xiao, Yanghua, Li, Lei
Creating what-if stories requires reasoning about prior statements and possible outcomes of the changed conditions. One can easily generate coherent endings under new conditions, but it would be challenging for current systems to do it with minimal changes to the original story. Therefore, one major challenge is the trade-off between generating a logical story and rewriting with minimal-edits. In this paper, we propose EDUCAT, an editing-based unsupervised approach for counterfactual story rewriting. EDUCAT includes a target position detection strategy based on estimating causal effects of the what-if conditions, which keeps the causal invariant parts of the story. EDUCAT then generates the stories under fluency, coherence and minimal-edits constraints. We also propose a new metric to alleviate the shortcomings of current automatic metrics and better evaluate the trade-off. We evaluate EDUCAT on a public counterfactual story rewriting benchmark. Experiments show that EDUCAT achieves the best trade-off over unsupervised SOTA methods according to both automatic and human evaluation. The resources of EDUCAT are available at: https://github.com/jiangjiechen/EDUCAT.
LOREN: Logic Enhanced Neural Reasoning for Fact Verification
Chen, Jiangjie, Bao, Qiaoben, Chen, Jiaze, Sun, Changzhi, Zhou, Hao, Xiao, Yanghua, Li, Lei
Given a natural language statement, how to verify whether it is supported, refuted, or unknown according to a large-scale knowledge source like Wikipedia? Existing neural-network-based methods often regard a sentence as a whole. While we argue that it is beneficial to decompose a statement into multiple verifiable logical points. In this paper, we propose LOREN, a novel approach for fact verification that integrates both Logic guided Reasoning and Neural inference. The key insight of LOREN is that it decomposes a statement into multiple reasoning units around the central phrases. Instead of directly validating a single reasoning unit, LOREN turns it into a question-answering task and calculates the confidence of every single hypothesis using neural networks in the embedding space. They are aggregated to make a final prediction using a neural joint reasoner guided by a set of three-valued logic rules. LOREN enjoys the additional merit of interpretability -- it is easy to explain how it reaches certain results with intermediate results and why it makes mistakes. We evaluate LOREN on FEVER, a public benchmark for fact verification. Experiments show that our proposed LOREN outperforms other previously published methods and achieves 73.43% of the FEVER score.