Goto

Collaborating Authors

 Chen, Haibo


Multimodal Image-to-Image Translation via Mutual Information Estimation and Maximization

arXiv.org Machine Learning

In this paper, we present a novel framework that can achieve multimodal image-to-image translation by simply encouraging the statistical dependence between the latent code and the output image in conditional generative adversarial networks. In addition, by incorporating a U-net generator into our framework, our method only needs to learn a one-sided translation model from the source image domain to the target image domain for both supervised and unsupervised multimodal image-to-image translation. Furthermore, our method also achieves disentanglement between the source domain content and the target domain style for free. We conduct experiments under supervised and unsupervised settings on various benchmark image-to-image translation datasets compared with the state-of-the-art methods, showing the effectiveness and simplicity of our method to achieve multimodal and high-quality results.


Learned Indexes for Dynamic Workloads

arXiv.org Artificial Intelligence

The recent proposal of learned index structures opens up a new perspective on how traditional range indexes can be optimized. However, the current learned indexes assume the data distribution is relatively static and the access pattern is uniform, while real-world scenarios consist of skew query distribution and evolving data. In this paper, we demonstrate that the missing consideration of access patterns and dynamic data distribution notably hinders the applicability of learned indexes. To this end, we propose solutions for learned indexes for dynamic workloads (called Doraemon). To improve the latency for skew queries, Doraemon augments the training data with access frequencies. To address the slow model re-training when data distribution shifts, Doraemon caches the previously-trained models and incrementally fine-tunes them for similar access patterns and data distribution. Our preliminary result shows that, Doraemon improves the query latency by 45.1% and reduces the model re-training time to 1/20.