Plotting

 Chen, Enhong


Confidence-Aware Matrix Factorization for Recommender Systems

AAAI Conferences

Collaborative filtering (CF), particularly matrix factorization (MF) based methods, have been widely used in recommender systems. The literature has reported that matrix factorization methods often produce superior accuracy of rating prediction in recommender systems. However, existing matrix factorization methods rarely consider confidence of the rating prediction and thus cannot support advanced recommendation tasks. In this paper, we propose a Confidence-aware Matrix Factorization (CMF) framework to simultaneously optimize the accuracy of rating prediction and measure the prediction confidence in the model. Specifically, we introduce variance parameters for both users and items in the matrix factorization process. Then, prediction interval can be computed to measure confidence for each predicted rating. These confidence quantities can be used to enhance the quality of recommendation results based on Confidence-aware Ranking (CR). We also develop two effective implementations of our framework to compute the confidence-aware matrix factorization for large-scale data. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness of our framework from multiple perspectives.


A Context-Enriched Neural Network Method for Recognizing Lexical Entailment

AAAI Conferences

Recognizing lexical entailment (RLE) always plays an important role in inference of natural language, i.e., identifying whether one word entails another, for example, fox entails animal. In the literature, automatically recognizing lexical entailment for word pairs deeply relies on words' contextual representations. However, as a "prototype" vector, a single representation cannot reveal multifaceted aspects of the words due to their homonymy and polysemy. In this paper, we propose a supervised Context-Enriched Neural Network (CENN) method for recognizing lexical entailment. To be specific, we first utilize multiple embedding vectors from different contexts to represent the input word pairs. Then, through different combination methods and attention mechanism, we integrate different embedding vectors and optimize their weights to predict whether there are entailment relations in word pairs. Moreover, our proposed framework is flexible and open to handle different word contexts and entailment perspectives in the text corpus. Extensive experiments on five datasets show that our approach significantly improves the performance of automatic RLE in comparison with several state-of-the-art methods.


Question Difficulty Prediction for READING Problems in Standard Tests

AAAI Conferences

Standard tests aim to evaluate the performance of examinees using different tests with consistent difficulties. Thus, a critical demand is to predict the difficulty of each test question before the test is conducted. Existing studies are usually based on the judgments of education experts (e.g., teachers), which may be subjective and labor intensive. In this paper, we propose a novel Test-aware Attention-based Convolutional Neural Network (TACNN) framework to automatically solve this Question Difficulty Prediction (QDP) task for READING problems (a typical problem style in English tests) in standard tests. Specifically, given the abundant historical test logs and text materials of questions, we first design a CNN-based architecture to extract sentence representations for the questions. Then, we utilize an attention strategy to qualify the difficulty contribution of each sentence to questions. Considering the incomparability of question difficulties in different tests, we propose a test-dependent pairwise strategy for training TACNN and generating the difficulty prediction value. Extensive experiments on a real-world dataset not only show the effectiveness of TACNN, but also give interpretable insights to track the attention information for questions.


Modeling Users’ Preferences and Social Links in Social Networking Services: A Joint-Evolving Perspective

AAAI Conferences

Researchers have long converged that the evolution of a Social Networking Service (SNS) platform is driven by the interplay between users' preferences (reflected in user-item consumption behavior) and the social network structure (reflected in user-user interaction behavior), with both kinds of users' behaviors change from time to time. However, traditional approaches either modeled these two kinds of behaviors in an isolated way or relied on a static assumption of a SNS. Thus, it is still unclear how do the roles of users' historical preferences and the dynamic social network structure affect the evolution of SNSs. Furthermore, can jointly modeling users' temporal behaviors in SNSs benefit both behavior prediction tasks?In this paper, we leverage the underlying social theories(i.e., social influence and the homophily effect) to investigate the interplay and evolution of SNSs. We propose a probabilistic approach to fuse these social theories for jointly modeling users' temporal behaviors in SNSs. Thus our proposed model has both the explanatory ability and predictive power. Experimental results on two real-world datasets demonstrate the effectiveness of our proposed model.


Reading the Videos: Temporal Labeling for Crowdsourced Time-Sync Videos Based on Semantic Embedding

AAAI Conferences

Recent years have witnessed the boom of online sharing media contents, which raise significant challenges in effective management and retrieval. Though a large amount of efforts have been made, precise retrieval on video shots with certain topics has been largely ignored. At the same time, due to the popularity of novel time-sync comments, or so-called "bullet-screen comments", video semantics could be now combined with timestamps to support further research on temporal video labeling. In this paper, we propose a novel video understanding framework to assign temporal labels on highlighted video shots. To be specific, due to the informal expression of bullet-screen comments, we first propose a temporal deep structured semantic model (T-DSSM) to represent comments into semantic vectors by taking advantage of their temporal correlation. Then, video highlights are recognized and labeled via semantic vectors in a supervised way. Extensive experiments on a real-world dataset prove that our framework could effectively label video highlights with a significant margin compared with baselines, which clearly validates the potential of our framework on video understanding, as well as bullet-screen comments interpretation.


Cognitive Modelling for Predicting Examinee Performance

AAAI Conferences

Cognitive modelling can discover the latent characteristics of examinees for predicting their performance (i.e. scores) on each problem. As cognitive modelling is important for numerous applications, e.g. personalized remedy recommendation, some solutions have been designed in the literature. However, the problem of extracting information from both objective and subjective problems to get more precise and interpretable cognitive analysis is still underexplored. To this end, we propose a fuzzy cognitive diagnosis framework (FuzzyCDF) for examinees' cognitive modelling with both objective and subjective problems. Specifically, to handle the partially correct responses on subjective problems, we first fuzzify the skill proficiency of examinees. Then, we combine fuzzy set theory and educational hypotheses to model the examinees' mastery on the problems. Further, we simulate the generation of examination scores by considering both slip and guess factors. Extensive experiments on three real-world datasets prove that FuzzyCDF can predict examinee performance more effectively, and the output of FuzzyCDF is also interpretative.


Temporally Adaptive Restricted Boltzmann Machine for Background Modeling

AAAI Conferences

We examine the fundamental problem of background modeling which is to model the background scenes in video sequences and segment the moving objects from the background. A novel approach is proposed based on the Restricted Boltzmann Machine (RBM) while exploiting the temporal nature of the problem. In particular, we augment the standard RBM to take a window of sequential video frames as input and generate the background model while enforcing the background smoothly adapting to the temporal changes. As a result, the augmented temporally adaptive model can generate stable background given noisy inputs and adapt quickly to the changes in background while keeping all the advantages of RBMs including exact inference and effective learning procedure. Experimental results demonstrate the effectiveness of the proposed method in modeling the temporal nature in background.


Exploiting Task-Feature Co-Clusters in Multi-Task Learning

AAAI Conferences

In multi-task learning, multiple related tasks are considered simultaneously, with the goal to improve the generalization performance by utilizing the intrinsic sharing of information across tasks. This paper presents a multi-task learning approach by modeling the task-feature relationships. Specifically, instead of assuming that similar tasks have similar weights on all the features, we start with the motivation that the tasks should be related in terms of subsets of features, which implies a co-cluster structure. We design a novel regularization term to capture this task-feature co-cluster structure. A proximal algorithm is adopted to solve the optimization problem. Convincing experimental results demonstrate the effectiveness of the proposed algorithm and justify the idea of exploiting the task-feature relationships.


A Nonconvex Relaxation Approach for Rank Minimization Problems

AAAI Conferences

Recently, solving rank minimization problems by leveraging nonconvex relaxations has received significant attention. Some theoretical analyses demonstrate that it can provide a better approximation of original problems than convex relaxations. However, designing an effective algorithm to solve nonconvex optimization problems remains a big challenge. In this paper, we propose an Iterative Shrinkage-Thresholding and Reweighted Algorithm (ISTRA) to solve rank minimization problems using the nonconvex weighted nuclear norm as a low rank regularizer. We prove theoretically that under certain assumptions our method achieves a high-quality local optimal solution efficiently. Experimental results on synthetic and real data show that the proposed ISTRA algorithm outperforms state-of-the-art methods in both accuracy and efficiency.


Learning Deep Representations for Graph Clustering

AAAI Conferences

Recently deep learning has been successfully adopted in many applications such as speech recognition and image classification. In this work, we explore the possibility of employing deep learning in graph clustering. We propose a simple method, which first learns a nonlinear embedding of the original graph by stacked autoencoder, and then runs $k$-means algorithm on the embedding to obtain the clustering result. We show that this simple method has solid theoretical foundation, due to the similarity between autoencoder and spectral clustering in terms of what they actually optimize. Then, we demonstrate that the proposed method is more efficient and flexible than spectral clustering. First, the computational complexity of autoencoder is much lower than spectral clustering: the former can be linear to the number of nodes in a sparse graph while the latter is super quadratic due to eigenvalue decomposition. Second, when additional sparsity constraint is imposed, we can simply employ the sparse autoencoder developed in the literature of deep learning; however, it is non-straightforward to implement a sparse spectral method. The experimental results on various graph datasets show that the proposed method significantly outperforms conventional spectral clustering which clearly indicates the effectiveness of deep learning in graph clustering.