Chen, Danqi
Improving Language Understanding from Screenshots
Gao, Tianyu, Wang, Zirui, Bhaskar, Adithya, Chen, Danqi
An emerging family of language models (LMs), capable of processing both text and images within a single visual view, has the promise to unlock complex tasks such as chart understanding and UI navigation. We refer to these models as screenshot language models. Despite their appeal, existing screenshot LMs substantially lag behind text-only models on language understanding tasks. To close this gap, we adopt a simplified setting where the model inputs are plain-text-rendered screenshots, and we focus on improving the text ability of screenshot LMs. We propose a novel Patch-and-Text Prediction (PTP) objective, which masks and recovers both image patches of screenshots and text within screenshots. We also conduct extensive ablation studies on masking rates and patch sizes, as well as designs for improving training stability. Our pre-trained model, while solely taking visual inputs, achieves comparable performance with BERT on 6 out of 8 GLUE tasks (within 2%) and improves up to 8% over prior work. Additionally, we extend PTP to train autoregressive screenshot LMs and demonstrate its effectiveness--our models can significantly reduce perplexity by utilizing the screenshot context. Together, we hope our findings can inspire future research on developing powerful screenshot LMs and extending their reach to broader applications.
Language Models as Science Tutors
Chevalier, Alexis, Geng, Jiayi, Wettig, Alexander, Chen, Howard, Mizera, Sebastian, Annala, Toni, Aragon, Max Jameson, Fanlo, Arturo Rodrรญguez, Frieder, Simon, Machado, Simon, Prabhakar, Akshara, Thieu, Ellie, Wang, Jiachen T., Wang, Zirui, Wu, Xindi, Xia, Mengzhou, Jia, Wenhan, Yu, Jiatong, Zhu, Jun-Jie, Ren, Zhiyong Jason, Arora, Sanjeev, Chen, Danqi
NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations.
QuRating: Selecting High-Quality Data for Training Language Models
Wettig, Alexander, Gupta, Aatmik, Malik, Saumya, Chen, Danqi
Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications.
LESS: Selecting Influential Data for Targeted Instruction Tuning
Xia, Mengzhou, Malladi, Sadhika, Gururangan, Suchin, Arora, Sanjeev, Chen, Danqi
Instruction tuning has unlocked powerful capabilities in large language models (LLMs), effectively using combined datasets to develop generalpurpose chatbots. However, real-world applications often require a specialized suite of skills (e.g., reasoning). The challenge lies in identifying the most relevant data from these extensive datasets to effectively develop specific capabilities, a setting we frame as targeted instruction tuning. We propose LESS, an optimizer-aware and practically efficient algorithm to effectively estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection. Crucially, LESS adapts existing influence formulations to work with the Adam optimizer and variable-length instruction data. LESS first constructs a highly reusable and transferable gradient datastore with low-dimensional gradient features and then selects examples based on their similarity to few-shot examples embodying a specific capability. Experiments show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks. Furthermore, the selected data is highly transferable: smaller models can be leveraged to select useful data for larger models and models from different families. Our qualitative analysis shows that our method goes beyond surface form cues to identify data that exemplifies the necessary reasoning skills for the intended downstream application.
Fine-Tuning Language Models with Just Forward Passes
Malladi, Sadhika, Gao, Tianyu, Nichani, Eshaan, Damian, Alex, Lee, Jason D., Chen, Danqi, Arora, Sanjeev
Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this work, we propose a memory-efficient zerothorder optimizer (MeZO), adapting the classical ZO-SGD method to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference. For example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter model, whereas fine-tuning with backpropagation can train only a 2.7B LM with the same budget. We conduct comprehensive experiments across model types (masked and autoregressive LMs), model scales (up to 66B), and downstream tasks (classification, multiple-choice, and generation). Our results demonstrate that (1) MeZO significantly outperforms in-context learning and linear probing; (2) MeZO achieves comparable performance to fine-tuning with backpropagation across multiple tasks, with up to 12x memory reduction and up to 2x GPU-hour reduction in our implementation; (3) MeZO is compatible with both full-parameter and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4) MeZO can effectively optimize non-differentiable objectives (e.g., maximizing accuracy or F1). We support our empirical findings with theoretical insights, highlighting how adequate pre-training and task prompts enable MeZO to fine-tune huge models, despite classical ZO analyses suggesting otherwise.
Interpretability Illusions in the Generalization of Simplified Models
Friedman, Dan, Lampinen, Andrew, Dixon, Lucas, Chen, Danqi, Ghandeharioun, Asma
A common method to study deep learning systems is to use simplified model representations--for example, using singular value decomposition to visualize the model's hidden states in a lower dimensional space. This approach assumes that the results of these simplifications are faithful to the original model. Here, we illustrate an important caveat to this assumption: even if the simplified representations can accurately approximate the full model on the training set, they may fail to accurately capture the model's behavior out of distribution--the understanding developed from simplified representations may be an illusion. We illustrate this by training Transformer models on controlled datasets with systematic generalization splits. First, we train models on the Dyck balanced-parenthesis languages. We simplify these models using tools like dimensionality reduction and clustering, and then explicitly test how these simplified proxies match the behavior of the original model on various out-of-distribution test sets. We find that the simplified proxies are generally less faithful out of distribution. In cases where the original model generalizes to novel structures or deeper depths, the simplified versions may fail, or generalize better. This finding holds even if the simplified representations do not directly depend on the training distribution. Next, we study a more naturalistic task: predicting the next character in a dataset of computer code. We find similar generalization gaps between the original model and simplified proxies, and conduct further analysis to investigate which aspects of the code completion task are associated with the largest gaps. Together, our results raise questions about the extent to which mechanistic interpretations derived using tools like SVD can reliably predict what a model will do in novel situations. How can we understand deep learning models? Often, we begin by simplifying the model, or its representations, using tools like dimensionality reduction, clustering, and discretization. We then interpret the results of these simplifications--for example finding dimensions in the principal components that encode a task-relevant feature (e.g. In other words, we are essentially replacing the original model with a simplified proxy which uses a more limited--and thus easier to interpret--set of features. By analyzing these simplified proxies, we hope to understand at an abstract level how the system solves a task. Ideally, this understanding could help us to predict how the model will behave in unfamiliar situations, and thereby anticipate failure cases or potentially unsafe behavior.
C-STS: Conditional Semantic Textual Similarity
Deshpande, Ameet, Jimenez, Carlos E., Chen, Howard, Murahari, Vishvak, Graf, Victoria, Rajpurohit, Tanmay, Kalyan, Ashwin, Chen, Danqi, Narasimhan, Karthik
Semantic textual similarity (STS), a cornerstone task in NLP, measures the degree of similarity between a pair of sentences, and has broad application in fields such as information retrieval and natural language understanding. However, sentence similarity can be inherently ambiguous, depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called Conditional STS (C-STS) which measures sentences' similarity conditioned on an feature described in natural language (hereon, condition). As an example, the similarity between the sentences "The NBA player shoots a three-pointer." and "A man throws a tennis ball into the air to serve." is higher for the condition "The motion of the ball" (both upward) and lower for "The size of the ball" (one large and one small). C-STS's advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS and (2) enables fine-grained language model evaluation through diverse natural language conditions. We put several state-of-the-art models to the test, and even those performing well on STS (e.g. SimCSE, Flan-T5, and GPT-4) find C-STS challenging; all with Spearman correlation scores below 50. To encourage a more comprehensive evaluation of semantic similarity and natural language understanding, we make nearly 19K C-STS examples and code available for others to train and test their models.
Adapting Language Models to Compress Contexts
Chevalier, Alexis, Wettig, Alexander, Ajith, Anirudh, Chen, Danqi
Transformer-based language models (LMs) are powerful and widely-applicable tools, but their usefulness is constrained by a finite context window and the expensive computational cost of processing long text documents. We propose to adapt pre-trained LMs into AutoCompressors. These language models are capable of compressing long contexts into compact summary vectors, which are then accessible to the model as soft prompts. Summary vectors are trained with an unsupervised objective, whereby long documents are processed in segments, and summary vectors from all previous segments are used in language modeling. We fine-tune OPT and Llama-2 models on sequences of up to 30,720 tokens and show that AutoCompressors can utilize long contexts to improve perplexity. We evaluate AutoCompressors on in-context learning by compressing task demonstrations and find that summary vectors are good substitutes for plain-text demonstrations, increasing accuracy while reducing inference costs. Finally, we explore the benefits of pre-computing summary vectors for large corpora by applying summary vectors to retrievalaugmented language modeling and a passage re-ranking task. Overall, AutoCompressors emerge as a simple and inexpensive solution to extend the context window of LMs while speeding up inference over long contexts.
Detecting Pretraining Data from Large Language Models
Shi, Weijia, Ajith, Anirudh, Xia, Mengzhou, Huang, Yangsibo, Liu, Daogao, Blevins, Terra, Chen, Danqi, Zettlemoyer, Luke
Although large language models (LLMs) are widely deployed, the data used to train them is rarely disclosed. Given the incredible scale of this data, up to trillions of tokens, it is all but certain that it includes potentially problematic text such as copyrighted materials, personally identifiable information, and test data for widely reported reference benchmarks. However, we currently have no way to know which data of these types is included or in what proportions. In this paper, we study the pretraining data detection problem: given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text? To facilitate this study, we introduce a dynamic benchmark WIKIMIA that uses data created before and after model training to support gold truth detection. We also introduce a new detection method Min-K% Prob based on a simple hypothesis: an unseen example is likely to contain a few outlier words with low probabilities under the LLM, while a seen example is less likely to have words with such low probabilities. Min-K% Prob can be applied without any knowledge about the pretraining corpus or any additional training, departing from previous detection methods that require training a reference model on data that is similar to the pretraining data. Moreover, our experiments demonstrate that Min-K% Prob achieves a 7.4% improvement on WIKIMIA over these previous methods. We apply Min-K% Prob to three real-world scenarios, copyrighted book detection, contaminated downstream example detection and privacy auditing of machine unlearning, and find it a consistently effective solution.
Enabling Large Language Models to Generate Text with Citations
Gao, Tianyu, Yen, Howard, Yu, Jiatong, Chen, Danqi
Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, our aim is to allow LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We develop automatic metrics along three dimensions -- fluency, correctness, and citation quality -- and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvement -- For example, on the ELI5 dataset, even the best models lack complete citation support 50% of the time. Our analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.