Goto

Collaborating Authors

 Chen, Danqi


Representing Rule-based Chatbots with Transformers

arXiv.org Artificial Intelligence

Transformer-based chatbots can conduct fluent, natural-sounding conversations, but we have limited understanding of the mechanisms underlying their behavior. Prior work has taken a bottom-up approach to understanding Transformers by constructing Transformers for various synthetic and formal language tasks, such as regular expressions and Dyck languages. However, it is not obvious how to extend this approach to understand more naturalistic conversational agents. In this work, we take a step in this direction by constructing a Transformer that implements the ELIZA program, a classic, rule-based chatbot. ELIZA illustrates some of the distinctive challenges of the conversational setting, including both local pattern matching and long-term dialog state tracking. We build on constructions from prior work -- in particular, for simulating finite-state automata -- showing how simpler constructions can be composed and extended to give rise to more sophisticated behavior. Next, we train Transformers on a dataset of synthetically generated ELIZA conversations and investigate the mechanisms the models learn. Our analysis illustrates the kinds of mechanisms these models tend to prefer -- for example, models favor an induction head mechanism over a more precise, position based copying mechanism; and using intermediate generations to simulate recurrent data structures, like ELIZA's memory mechanisms. Overall, by drawing an explicit connection between neural chatbots and interpretable, symbolic mechanisms, our results offer a new setting for mechanistic analysis of conversational agents.


SimPO: Simple Preference Optimization with a Reference-Free Reward

arXiv.org Artificial Intelligence

Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further enhancing the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models like Mistral and Llama3. We evaluated on extensive instruction-following benchmarks, including AlpacaEval 2, MT-Bench, and the recent challenging Arena-Hard benchmark. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Llama3-8B-Instruct, achieves a remarkable 53.7 length-controlled win rate on AlpacaEval 2 -- surpassing Claude 3 Opus on the leaderboard, and a 36.5 win rate on Arena-Hard -- making it the strongest 8B open-source model.


Finding Transformer Circuits with Edge Pruning

arXiv.org Artificial Intelligence

The path to interpreting a language model often proceeds via analysis of circuits -- sparse computational subgraphs of the model that capture specific aspects of its behavior. Recent work has automated the task of discovering circuits. Yet, these methods have practical limitations, as they rely either on inefficient search algorithms or inaccurate approximations. In this paper, we frame automated circuit discovery as an optimization problem and propose *Edge Pruning* as an effective and scalable solution. Edge Pruning leverages gradient-based pruning techniques, but instead of removing neurons or components, it prunes the \emph{edges} between components. Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods while being equally faithful to the full model predictions on standard circuit-finding tasks. Edge Pruning is efficient even with as many as 100K examples, outperforming previous methods in speed and producing substantially better circuits. It also perfectly recovers the ground-truth circuits in two models compiled with Tracr. Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on. We use this setting for a case study comparing the mechanisms behind instruction prompting and in-context learning. We find two circuits with more than 99.96% sparsity that match the performance of the full model and reveal that the mechanisms in the two settings overlap substantially. Our case study shows that Edge Pruning is a practical and scalable tool for interpretability and sheds light on behaviors that only emerge in large models.


Long-Context Language Modeling with Parallel Context Encoding

arXiv.org Artificial Intelligence

Extending large language models (LLMs) to process longer inputs is crucial for a wide range of applications. However, the substantial computational cost of transformers and limited generalization of positional encoding restrict the size of their context window. We introduce Context Expansion with Parallel Encoding (CEPE), a framework that can be applied to any existing decoder-only LLMs to extend their context window. CEPE employs a small encoder to process long inputs chunk by chunk, enabling the frozen decoder to utilize additional contexts via cross-attention. CEPE is efficient, generalizable, and versatile: trained with 8K-token documents, it extends the context window of LLAMA-2 to 128K tokens, offering 10x the throughput with only 1/6 of the memory. CEPE yields strong performance on language modeling and in-context learning. CEPE also excels in retrieval-augmented applications, while existing long-context models degenerate with retrieved contexts. We further introduce a CEPE variant that can extend the context window of instruction-tuned models using only unlabeled data, and showcase its effectiveness on LLAMA-2-CHAT, leading to a strong instruction-following model that can leverage very long contexts on downstream tasks.


The Heuristic Core: Understanding Subnetwork Generalization in Pretrained Language Models

arXiv.org Artificial Intelligence

Prior work has found that pretrained language models (LMs) fine-tuned with different random seeds can achieve similar in-domain performance but generalize differently on tests of syntactic generalization. In this work, we show that, even within a single model, we can find multiple subnetworks that perform similarly in-domain, but generalize vastly differently. To better understand these phenomena, we investigate if they can be understood in terms of "competing subnetworks": the model initially represents a variety of distinct algorithms, corresponding to different subnetworks, and generalization occurs when it ultimately converges to one. This explanation has been used to account for generalization in simple algorithmic tasks ("grokking"). Instead of finding competing subnetworks, we find that all subnetworks -- whether they generalize or not -- share a set of attention heads, which we refer to as the heuristic core. Further analysis suggests that these attention heads emerge early in training and compute shallow, non-generalizing features. The model learns to generalize by incorporating additional attention heads, which depend on the outputs of the "heuristic" heads to compute higher-level features. Overall, our results offer a more detailed picture of the mechanisms for syntactic generalization in pretrained LMs.


AI Risk Management Should Incorporate Both Safety and Security

arXiv.org Artificial Intelligence

The exposure of security vulnerabilities in safety-aligned language models, e.g., susceptibility to adversarial attacks, has shed light on the intricate interplay between AI safety and AI security. Although the two disciplines now come together under the overarching goal of AI risk management, they have historically evolved separately, giving rise to differing perspectives. Therefore, in this paper, we advocate that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security, and unambiguously take into account the perspectives of both disciplines in order to devise mostly effective and holistic risk mitigation approaches. Unfortunately, this vision is often obfuscated, as the definitions of the basic concepts of "safety" and "security" themselves are often inconsistent and lack consensus across communities. With AI risk management being increasingly cross-disciplinary, this issue is particularly salient. In light of this conceptual challenge, we introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security, aiming to facilitate a shared understanding and effective collaboration across communities.


Certifiably Robust RAG against Retrieval Corruption

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) has been shown vulnerable to retrieval corruption attacks: an attacker can inject malicious passages into retrieval results to induce inaccurate responses. In this paper, we propose RobustRAG as the first defense framework against retrieval corruption attacks. The key insight of RobustRAG is an isolate-then-aggregate strategy: we get LLM responses from each passage in isolation and then securely aggregate these isolated responses. To instantiate RobustRAG, we design keyword-based and decoding-based algorithms for securely aggregating unstructured text responses. Notably, RobustRAG can achieve certifiable robustness: we can formally prove and certify that, for certain queries, RobustRAG can always return accurate responses, even when the attacker has full knowledge of our defense and can arbitrarily inject a small number of malicious passages. We evaluate RobustRAG on open-domain QA and long-form text generation datasets and demonstrate its effectiveness and generalizability across various tasks and datasets.


Lory: Fully Differentiable Mixture-of-Experts for Autoregressive Language Model Pre-training

arXiv.org Artificial Intelligence

Mixture-of-experts (MoE) models facilitate efficient scaling; however, training the router network introduces the challenge of optimizing a non-differentiable, discrete objective. Recently, a fully-differentiable MoE architecture, SMEAR, was proposed (Muqeeth et al., 2023), which softly merges experts in the parameter space; nevertheless, its effectiveness was only demonstrated in downstream fine-tuning on classification tasks. In this paper, we present Lory, the first approach that scales such architectures to autoregressive language model pre-training. Lory introduces two key techniques: (1) a causal segment routing strategy that achieves high efficiency for expert merging operations while preserving the autoregressive nature of language models; (2) a similarity-based data batching method that encourages expert specialization by grouping similar documents in training instances. We pre-train a series of Lory models on 150B tokens from scratch, with up to 32 experts and 30B (1.5B active) parameters. Experimental results show significant performance gains over parameter-matched dense models on both perplexity (+13.9%) and a variety of downstream tasks (+1.5%-11.1%). Despite segment-level routing, Lory models achieve competitive performance compared to state-of-the-art MoE models with token-level routing. We further demonstrate that the trained experts in Lory capture domain-level specialization without supervision. Our work highlights the potential of fully-differentiable MoE architectures for language model pre-training and advocates future research in this area.



Reliable, Adaptable, and Attributable Language Models with Retrieval

arXiv.org Artificial Intelligence

Parametric language models (LMs), which are trained on vast amounts of web data, exhibit remarkable flexibility and capability. However, they still face practical challenges such as hallucinations, difficulty in adapting to new data distributions, and a lack of verifiability. In this position paper, we advocate for retrieval-augmented LMs to replace parametric LMs as the next generation of LMs. By incorporating large-scale datastores during inference, retrieval-augmented LMs can be more reliable, adaptable, and attributable. Despite their potential, retrieval-augmented LMs have yet to be widely adopted due to several obstacles: specifically, current retrieval-augmented LMs struggle to leverage helpful text beyond knowledge-intensive tasks such as question answering, have limited interaction between retrieval and LM components, and lack the infrastructure for scaling. To address these, we propose a roadmap for developing general-purpose retrieval-augmented LMs. This involves a reconsideration of datastores and retrievers, the exploration of pipelines with improved retriever-LM interaction, and significant investment in infrastructure for efficient training and inference.