Chen, Chunyang
Training-free Lexical Backdoor Attacks on Language Models
Huang, Yujin, Zhuo, Terry Yue, Xu, Qiongkai, Hu, Han, Yuan, Xingliang, Chen, Chunyang
Large-scale language models have achieved tremendous success across various natural language processing (NLP) applications. Nevertheless, language models are vulnerable to backdoor attacks, which inject stealthy triggers into models for steering them to undesirable behaviors. Most existing backdoor attacks, such as data poisoning, require further (re)training or fine-tuning language models to learn the intended backdoor patterns. The additional training process however diminishes the stealthiness of the attacks, as training a language model usually requires long optimization time, a massive amount of data, and considerable modifications to the model parameters. In this work, we propose Training-Free Lexical Backdoor Attack (TFLexAttack) as the first training-free backdoor attack on language models. Our attack is achieved by injecting lexical triggers into the tokenizer of a language model via manipulating its embedding dictionary using carefully designed rules. These rules are explainable to human developers which inspires attacks from a wider range of hackers. The sparse manipulation of the dictionary also habilitates the stealthiness of our attack. We conduct extensive experiments on three dominant NLP tasks based on nine language models to demonstrate the effectiveness and universality of our attack. The code of this work is available at https://github.com/Jinxhy/TFLexAttack.
Automated Query Reformulation for Efficient Search based on Query Logs From Stack Overflow
Cao, Kaibo, Chen, Chunyang, Baltes, Sebastian, Treude, Christoph, Chen, Xiang
As a popular Q&A site for programming, Stack Overflow is a treasure for developers. However, the amount of questions and answers on Stack Overflow make it difficult for developers to efficiently locate the information they are looking for. There are two gaps leading to poor search results: the gap between the user's intention and the textual query, and the semantic gap between the query and the post content. Therefore, developers have to constantly reformulate their queries by correcting misspelled words, adding limitations to certain programming languages or platforms, etc. As query reformulation is tedious for developers, especially for novices, we propose an automated software-specific query reformulation approach based on deep learning. With query logs provided by Stack Overflow, we construct a large-scale query reformulation corpus, including the original queries and corresponding reformulated ones. Our approach trains a Transformer model that can automatically generate candidate reformulated queries when given the user's original query. The evaluation results show that our approach outperforms five state-of-the-art baselines, and achieves a 5.6% to 33.5% boost in terms of $\mathit{ExactMatch}$ and a 4.8% to 14.4% boost in terms of $\mathit{GLEU}$.
DeepPayload: Black-box Backdoor Attack on Deep Learning Models through Neural Payload Injection
Li, Yuanchun, Hua, Jiayi, Wang, Haoyu, Chen, Chunyang, Liu, Yunxin
Deep learning models are increasingly used in mobile applications as critical components. Unlike the program bytecode whose vulnerabilities and threats have been widely-discussed, whether and how the deep learning models deployed in the applications can be compromised are not well-understood since neural networks are usually viewed as a black box. In this paper, we introduce a highly practical backdoor attack achieved with a set of reverse-engineering techniques over compiled deep learning models. The core of the attack is a neural conditional branch constructed with a trigger detector and several operators and injected into the victim model as a malicious payload. The attack is effective as the conditional logic can be flexibly customized by the attacker, and scalable as it does not require any prior knowledge from the original model. We evaluated the attack effectiveness using 5 state-of-the-art deep learning models and real-world samples collected from 30 users. The results demonstrated that the injected backdoor can be triggered with a success rate of 93.5%, while only brought less than 2ms latency overhead and no more than 1.4% accuracy decrease. We further conducted an empirical study on real-world mobile deep learning apps collected from Google Play. We found 54 apps that were vulnerable to our attack, including popular and security-critical ones. The results call for the awareness of deep learning application developers and auditors to enhance the protection of deployed models.
DeepGauge: Comprehensive and Multi-Granularity Testing Criteria for Gauging the Robustness of Deep Learning Systems
Ma, Lei, Juefei-Xu, Felix, Sun, Jiyuan, Chen, Chunyang, Su, Ting, Zhang, Fuyuan, Xue, Minhui, Li, Bo, Li, Li, Liu, Yang, Zhao, Jianjun, Wang, Yadong
Deep learning defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. Deep learning (DL) has been widely adopted in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the robustness of a DL system against adversarial attacks is usually measured by the accuracy of test data. Considering the limitation of accessible test data, good performance on test data can hardly guarantee the robustness and generality of DL systems. Different from traditional software systems which have clear and controllable logic and functionality, a DL system is trained with data and lacks thorough understanding. This makes it difficult for system analysis and defect detection, which could potentially hinder its real-world deployment without safety guarantees. In this paper, we propose DeepGauge, a comprehensive and multi-granularity testing criteria for DL systems, which renders a complete and multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, with four state-of-the-art adversarial data generation techniques. The effectiveness of DeepGauge sheds light on the construction of robust DL systems.