Chen, Chunlin
Efficient Bayesian Policy Reuse with a Scalable Observation Model in Deep Reinforcement Learning
Liu, Jinmei, Wang, Zhi, Chen, Chunlin, Dong, Daoyi
Bayesian policy reuse (BPR) is a general policy transfer framework for selecting a source policy from an offline library by inferring the task belief based on some observation signals and a trained observation model. In this paper, we propose an improved BPR method to achieve more efficient policy transfer in deep reinforcement learning (DRL). First, most BPR algorithms use the episodic return as the observation signal that contains limited information and cannot be obtained until the end of an episode. Instead, we employ the state transition sample, which is informative and instantaneous, as the observation signal for faster and more accurate task inference. Second, BPR algorithms usually require numerous samples to estimate the probability distribution of the tabular-based observation model, which may be expensive and even infeasible to learn and maintain, especially when using the state transition sample as the signal. Hence, we propose a scalable observation model based on fitting state transition functions of source tasks from only a small number of samples, which can generalize to any signals observed in the target task. Moreover, we extend the offline-mode BPR to the continual learning setting by expanding the scalable observation model in a plug-and-play fashion, which can avoid negative transfer when faced with new unknown tasks. Experimental results show that our method can consistently facilitate faster and more efficient policy transfer.
Model-Aware Contrastive Learning: Towards Escaping the Dilemmas
Huang, Zizheng, Chen, Haoxing, Wen, Ziqi, Zhang, Chao, Li, Huaxiong, Wang, Bo, Chen, Chunlin
Contrastive learning (CL) continuously achieves significant breakthroughs across multiple domains. However, the most common InfoNCE-based methods suffer from some dilemmas, such as \textit{uniformity-tolerance dilemma} (UTD) and \textit{gradient reduction}, both of which are related to a $\mathcal{P}_{ij}$ term. It has been identified that UTD can lead to unexpected performance degradation. We argue that the fixity of temperature is to blame for UTD. To tackle this challenge, we enrich the CL loss family by presenting a Model-Aware Contrastive Learning (MACL) strategy, whose temperature is adaptive to the magnitude of alignment that reflects the basic confidence of the instance discrimination task, then enables CL loss to adjust the penalty strength for hard negatives adaptively. Regarding another dilemma, the gradient reduction issue, we derive the limits of an involved gradient scaling factor, which allows us to explain from a unified perspective why some recent approaches are effective with fewer negative samples, and summarily present a gradient reweighting to escape this dilemma. Extensive remarkable empirical results in vision, sentence, and graph modality validate our approach's general improvement for representation learning and downstream tasks.
N$\text{A}^\text{2}$Q: Neural Attention Additive Model for Interpretable Multi-Agent Q-Learning
Liu, Zichuan, Zhu, Yuanyang, Chen, Chunlin
Value decomposition is widely used in cooperative multi-agent reinforcement learning, however, its implicit credit assignment mechanism is not yet fully understood due to black-box networks. In this work, we study an interpretable value decomposition framework via the family of generalized additive models. We present a novel method, named Neural Attention Additive Q-learning (N$\text{A}^\text{2}$Q), providing inherent intelligibility of collaboration behavior. N$\text{A}^\text{2}$Q can explicitly factorize the optimal joint policy induced by enriching shape functions to model all possible coalitions of agents into individual policies. Moreover, we construct identity semantics to promote estimating credits together with the global state and individual value functions, where local semantic masks help us diagnose whether each agent captures relevant-task information. Extensive experiments show that N$\text{A}^\text{2}$Q consistently achieves superior performance compared to different state-of-the-art methods on all challenging tasks, while yielding human-like interpretability.
Boosting Value Decomposition via Unit-Wise Attentive State Representation for Cooperative Multi-Agent Reinforcement Learning
Zhao, Qingpeng, Zhu, Yuanyang, Liu, Zichuan, Wang, Zhi, Chen, Chunlin
In cooperative multi-agent reinforcement learning (MARL), the environmental stochasticity and uncertainties will increase exponentially when the number of agents increases, which puts hard pressure on how to come up with a compact latent representation from partial observation for boosting value decomposition. To tackle these issues, we propose a simple yet powerful method that alleviates partial observability and efficiently promotes coordination by introducing the UNit-wise attentive State Representation (UNSR). In UNSR, each agent learns a compact and disentangled unit-wise state representation outputted from transformer blocks, and produces its local action-value function. The proposed UNSR is used to boost the value decomposition with a multi-head attention mechanism for producing efficient credit assignment in the mixing network, providing an efficient reasoning path between the individual value function and joint value function. Experimental results demonstrate that our method achieves superior performance and data efficiency compared to solid baselines on the StarCraft II micromanagement challenge. Additional ablation experiments also help identify the key factors contributing to the performance of UNSR.
Depthwise Convolution for Multi-Agent Communication with Enhanced Mean-Field Approximation
Xie, Donghan, Wang, Zhi, Chen, Chunlin, Dong, Daoyi
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
MIXRTs: Toward Interpretable Multi-Agent Reinforcement Learning via Mixing Recurrent Soft Decision Trees
Liu, Zichuan, Zhu, Yuanyang, Wang, Zhi, Gao, Yang, Chen, Chunlin
Multi-agent reinforcement learning (MARL) recently has achieved tremendous success in a wide range of fields. However, with a black-box neural network architecture, existing MARL methods make decisions in an opaque fashion that hinders humans from understanding the learned knowledge and how input observations influence decisions. Our solution is MIXing Recurrent soft decision Trees (MIXRTs), a novel interpretable architecture that can represent explicit decision processes via the root-to-leaf path of decision trees. We introduce a novel recurrent structure in soft decision trees to address partial observability, and estimate joint action values via linearly mixing outputs of recurrent trees based on local observations only. Theoretical analysis shows that MIXRTs guarantees the structural constraint with additivity and monotonicity in factorization. We evaluate MIXRTs on a range of challenging StarCraft II tasks. Experimental results show that our interpretable learning framework obtains competitive performance compared to widely investigated baselines, and delivers more straightforward explanations and domain knowledge of the decision processes.
Rule-Based Reinforcement Learning for Efficient Robot Navigation with Space Reduction
Zhu, Yuanyang, Wang, Zhi, Chen, Chunlin, Dong, Daoyi
For real-world deployments, it is critical to allow robots to navigate in complex environments autonomously. Traditional methods usually maintain an internal map of the environment, and then design several simple rules, in conjunction with a localization and planning approach, to navigate through the internal map. These approaches often involve a variety of assumptions and prior knowledge. In contrast, recent reinforcement learning (RL) methods can provide a model-free, self-learning mechanism as the robot interacts with an initially unknown environment, but are expensive to deploy in real-world scenarios due to inefficient exploration. In this paper, we focus on efficient navigation with the RL technique and combine the advantages of these two kinds of methods into a rule-based RL (RuRL) algorithm for reducing the sample complexity and cost of time. First, we use the rule of wall-following to generate a closed-loop trajectory. Second, we employ a reduction rule to shrink the trajectory, which in turn effectively reduces the redundant exploration space. Besides, we give the detailed theoretical guarantee that the optimal navigation path is still in the reduced space. Third, in the reduced space, we utilize the Pledge rule to guide the exploration strategy for accelerating the RL process at the early stage. Experiments conducted on real robot navigation problems in hex-grid environments demonstrate that RuRL can achieve improved navigation performance.
Deep Reinforcement Learning with Quantum-inspired Experience Replay
Wei, Qing, Ma, Hailan, Chen, Chunlin, Dong, Daoyi
In this paper, a novel training paradigm inspired by quantum computation is proposed for deep reinforcement learning (DRL) with experience replay. In contrast to traditional experience replay mechanism in DRL, the proposed deep reinforcement learning with quantum-inspired experience replay (DRL-QER) adaptively chooses experiences from the replay buffer according to the complexity and the replayed times of each experience (also called transition), to achieve a balance between exploration and exploitation. In DRL-QER, transitions are first formulated in quantum representations, and then the preparation operation and the depreciation operation are performed on the transitions. In this progress, the preparation operation reflects the relationship between the temporal difference errors (TD-errors) and the importance of the experiences, while the depreciation operation is taken into account to ensure the diversity of the transitions. The experimental results on Atari 2600 games show that DRL-QER outperforms state-of-the-art algorithms such as DRL-PER and DCRL on most of these games with improved training efficiency, and is also applicable to such memory-based DRL approaches as double network and dueling network.
Multi-scale Adaptive Task Attention Network for Few-Shot Learning
Chen, Haoxing, Li, Huaxiong, Li, Yaohui, Chen, Chunlin
The goal of few-shot learning is to classify unseen categories with few labeled samples. Recently, the low-level information metric-learning based methods have achieved satisfying performance, since local representations (LRs) are more consistent between seen and unseen classes. However, most of these methods deal with each category in the support set independently, which is not sufficient to measure the relation between features, especially in a certain task. Moreover, the low-level information-based metric learning method suffers when dominant objects of different scales exist in a complex background. To address these issues, this paper proposes a novel Multi-scale Adaptive Task Attention Network (MATANet) for few-shot learning. Specifically, we first use a multi-scale feature generator to generate multiple features at different scales. Then, an adaptive task attention module is proposed to select the most important LRs among the entire task. Afterwards, a similarity-to-class module and a fusion layer are utilized to calculate a joint multi-scale similarity between the query image and the support set. Extensive experiments on popular benchmarks clearly show the effectiveness of the proposed MATANet compared with state-of-the-art methods.
Instance Weighted Incremental Evolution Strategies for Reinforcement Learning in Dynamic Environments
Wang, Zhi, Chen, Chunlin, Dong, Daoyi
Evolution strategies (ES), as a family of black-box optimization algorithms, recently emerge as a scalable alternative to reinforcement learning (RL) approaches such as Q-learning or policy gradient, and are much faster when many central processing units (CPUs) are available due to better parallelization. In this paper, we propose a systematic incremental learning method for ES in dynamic environments. The goal is to adjust previously learned policy to a new one incrementally whenever the environment changes. We incorporate an instance weighting mechanism with ES to facilitate its learning adaptation, while retaining scalability of ES. During parameter updating, higher weights are assigned to instances that contain more new knowledge, thus encouraging the search distribution to move towards new promising areas of parameter space. We propose two easy-to-implement metrics to calculate the weights: instance novelty and instance quality. Instance novelty measures an instance's difference from the previous optimum in the original environment, while instance quality corresponds to how well an instance performs in the new environment. The resulting algorithm, Instance Weighted Incremental Evolution Strategies (IW-IES), is verified to achieve significantly improved performance on a suite of robot navigation tasks. This paper thus introduces a family of scalable ES algorithms for RL domains that enables rapid learning adaptation to dynamic environments.