Plotting

 Chen, Chaochao


Capturing Semantic Correlation for Item Recommendation in Tagging Systems

AAAI Conferences

The popularity of tagging systems provides a great opportunity to improve the performance of item recommendation. Although existing approaches use topic modeling to mine the semantic information of items by grouping the tags labelled for items, they overlook an important property that tags link users and items as a bridge. Thus these methods cannot deal with the data sparsity without commonly rated items (DS-WO-CRI) problem, limiting their recommendation performance. Towards solving this challenging problem, we propose a novel tag and rating based collaborative filtering (CF) model for item recommendation, which first uses topic modeling to mine the semantic information of tags for each user and for each item respectively, and then incorporates the semantic information into matrix factorization to factorize rating information and to capture the bridging feature of tags and ratings between users and items.As a result, our model captures the semantic correlation between users and items, and is able to greatly improve recommendation performance, especially in DS-WO-CRI situations.Experiments conducted on two popular real-world datasets demonstrate that our proposed model significantly outperforms the conventional CF approach, the state-of-the-art social relation based CF approach, and the state-of-the-art topic modeling based CF approaches in terms of both precision and recall, and it is an effective approach to the DS-WO-CRI problem.


Context-Aware Collaborative Topic Regression with Social Matrix Factorization for Recommender Systems

AAAI Conferences

Online social networking sites have become popular platforms on which users can link with each other and share information, not only basic rating information but also information such as contexts, social relationships, and item contents. However, as far as we know, no existing works systematically combine diverse types of information to build more accurate recommender systems. In this paper, we propose a novel context-aware hierarchical Bayesian method. First, we propose the use of spectral clustering for user-item subgrouping, so that users and items in similar contexts are grouped. We then propose a novel hierarchical Bayesian model that can make predictions for each user-item subgroup, our model incorporate not only topic modeling to mine item content but also social matrix factorization to handle ratings and social relationships. Experiments on an Epinions dataset show that our method significantly improves recommendation performance compared with six categories of state-of-the-art recommendation methods in terms of both prediction accuracy and recall. We have also conducted experiments to study the extent to which ratings, contexts, social relationships, and item contents contribute to recommendation performance in terms of prediction accuracy and recall.