Plotting

 Chekalina, Viktoriia


Addressing Hallucinations in Language Models with Knowledge Graph Embeddings as an Additional Modality

arXiv.org Artificial Intelligence

In this paper we present an approach to reduce hallucinations in Large Language Models (LLMs) by incorporating Knowledge Graphs (KGs) as an additional modality. Our method involves transforming input text into a set of KG embeddings and using an adapter to integrate these embeddings into the language model space, without relying on external retrieval processes. To facilitate this, we created WikiEntities, a dataset containing over 3 million Wikipedia texts annotated with entities from Wikidata and their corresponding embeddings from PyTorch-BigGraph. This dataset serves as a valuable resource for training Entity Linking models and adapting the described method to various LLMs using specialized adapters. Our method does not require fine-tuning of the language models themselves; instead, we only train the adapter. This ensures that the model's performance on other tasks is not affected. We trained an adapter for the Mistral 7B, LLaMA 2-7B (chat), and LLaMA 3-8B (instruct) models using this dataset and demonstrated that our approach improves performance on the HaluEval, True-False benchmarks and FEVER dataset. The results indicate that incorporating KGs as a new modality can effectively reduce hallucinations and improve the factual accuracy of language models, all without the need for external retrieval.


SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers

arXiv.org Artificial Intelligence

The performance of Transformer models has been enhanced by increasing the number of parameters and the length of the processed text. Consequently, fine-tuning the entire model becomes a memory-intensive process. High-performance methods for parameter-efficient fine-tuning (PEFT) typically work with Attention blocks and often overlook MLP blocks, which contain about half of the model parameters. We propose a new selective PEFT method, namely SparseGrad, that performs well on MLP blocks. We transfer layer gradients to a space where only about 1\% of the layer's elements remain significant. By converting gradients into a sparse structure, we reduce the number of updated parameters. We apply SparseGrad to fine-tune BERT and RoBERTa for the NLU task and LLaMa-2 for the Question-Answering task. In these experiments, with identical memory requirements, our method outperforms LoRA and MeProp, robust popular state-of-the-art PEFT approaches.


Efficient GPT Model Pre-training using Tensor Train Matrix Representation

arXiv.org Artificial Intelligence

Large-scale transformer models have shown remarkable performance in language modelling tasks. However, such models feature billions of parameters, leading to difficulties in their deployment and prohibitive training costs from scratch. To reduce the number of the parameters in the GPT-2 architecture, we replace the matrices of fully-connected layers with the corresponding Tensor Train Matrix~(TTM) structure. Finally, we customize forward and backward operations through the TTM-based layer for simplicity and the stableness of further training. % The resulting GPT-2-based model stores up to 40% fewer parameters, showing the perplexity comparable to the original model. On the downstream tasks, including language understanding and text summarization, the model performs similarly to the original GPT-2 model. The proposed tensorized layers could be used to efficiently pre-training other Transformer models.