Che, Zhengping
Knowledge Transfer in Multi-Task Deep Reinforcement Learning for Continuous Control
Xu, Zhiyuan, Wu, Kun, Che, Zhengping, Tang, Jian, Ye, Jieping
While Deep Reinforcement Learning (DRL) has emerged as a promising approach to many complex tasks, it remains challenging to train a single DRL agent that is capable of undertaking multiple different continuous control tasks. In this paper, we present a Knowledge Transfer based Multi-task Deep Reinforcement Learning framework (KTM-DRL) for continuous control, which enables a single DRL agent to achieve expert-level performance in multiple different tasks by learning from task-specific teachers. In KTM-DRL, the multi-task agent first leverages an offline knowledge transfer algorithm designed particularly for the actor-critic architecture to quickly learn a control policy from the experience of task-specific teachers, and then it employs an online learning algorithm to further improve itself by learning from new online transition samples under the guidance of those teachers. We perform a comprehensive empirical study with two commonly-used benchmarks in the MuJoCo continuous control task suite. The experimental results well justify the effectiveness of KTM-DRL and its knowledge transfer and online learning algorithms, as well as its superiority over the state-of-the-art by a large margin.
D$^2$-City: A Large-Scale Dashcam Video Dataset of Diverse Traffic Scenarios
Che, Zhengping, Li, Guangyu, Li, Tracy, Jiang, Bo, Shi, Xuefeng, Zhang, Xinsheng, Lu, Ying, Wu, Guobin, Liu, Yan, Ye, Jieping
Driving datasets accelerate the development of intelligent driving and related computer vision technologies, while substantial and detailed annotations serve as fuels and powers to boost the efficacy of such datasets to improve learning-based models. We propose D$^2$-City, a large-scale comprehensive collection of dashcam videos collected by vehicles on DiDi's platform. D$^2$-City contains more than 10000 video clips which deeply reflect the diversity and complexity of real-world traffic scenarios in China. We also provide bounding boxes and tracking annotations of 12 classes of objects in all frames of 1000 videos and detection annotations on keyframes for the remainder of the videos. Compared with existing datasets, D$^2$-City features data in varying weather, road, and traffic conditions and a huge amount of elaborate detection and tracking annotations. By bringing a diverse set of challenging cases to the community, we expect the D$^2$-City dataset will advance the perception and related areas of intelligent driving.
Benchmark of Deep Learning Models on Large Healthcare MIMIC Datasets
Purushotham, Sanjay, Meng, Chuizheng, Che, Zhengping, Liu, Yan
Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the `raw' clinical time series data is used as input features to the models.
Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic Health Records
Che, Zhengping, Cheng, Yu, Zhai, Shuangfei, Sun, Zhaonan, Liu, Yan
The rapid growth of Electronic Health Records (EHRs), as well as the accompanied opportunities in Data-Driven Healthcare (DDH), has been attracting widespread interests and attentions. Recent progress in the design and applications of deep learning methods has shown promising results and is forcing massive changes in healthcare academia and industry, but most of these methods rely on massive labeled data. In this work, we propose a general deep learning framework which is able to boost risk prediction performance with limited EHR data. Our model takes a modified generative adversarial network namely ehrGAN, which can provide plausible labeled EHR data by mimicking real patient records, to augment the training dataset in a semi-supervised learning manner. We use this generative model together with a convolutional neural network (CNN) based prediction model to improve the onset prediction performance. Experiments on two real healthcare datasets demonstrate that our proposed framework produces realistic data samples and achieves significant improvements on classification tasks with the generated data over several stat-of-the-art baselines.
Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding
Che, Zhengping, Cheng, Yu, Sun, Zhaonan, Liu, Yan
The widespread availability of electronic health records (EHRs) promises to usher in the era of personalized medicine. However, the problem of extracting useful clinical representations from longitudinal EHR data remains challenging. In this paper, we explore deep neural network models with learned medical feature embedding to deal with the problems of high dimensionality and temporality. Specifically, we use a multi-layer convolutional neural network (CNN) to parameterize the model and is thus able to capture complex non-linear longitudinal evolution of EHRs. Our model can effectively capture local/short temporal dependency in EHRs, which is beneficial for risk prediction. To account for high dimensionality, we use the embedding medical features in the CNN model which hold the natural medical concepts. Our initial experiments produce promising results and demonstrate the effectiveness of both the medical feature embedding and the proposed convolutional neural network in risk prediction on cohorts of congestive heart failure and diabetes patients compared with several strong baselines.
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Che, Zhengping, Purushotham, Sanjay, Cho, Kyunghyun, Sontag, David, Liu, Yan
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
Distilling Knowledge from Deep Networks with Applications to Healthcare Domain
Che, Zhengping, Purushotham, Sanjay, Khemani, Robinder, Liu, Yan
Exponential growth in Electronic Healthcare Records (EHR) has resulted in new opportunities and urgent needs for discovery of meaningful data-driven representations and patterns of diseases in Computational Phenotyping research. Deep Learning models have shown superior performance for robust prediction in computational phenotyping tasks, but suffer from the issue of model interpretability which is crucial for clinicians involved in decision-making. In this paper, we introduce a novel knowledge-distillation approach called Interpretable Mimic Learning, to learn interpretable phenotype features for making robust prediction while mimicking the performance of deep learning models. Our framework uses Gradient Boosting Trees to learn interpretable features from deep learning models such as Stacked Denoising Autoencoder and Long Short-Term Memory. Exhaustive experiments on a real-world clinical time-series dataset show that our method obtains similar or better performance than the deep learning models, and it provides interpretable phenotypes for clinical decision making.