Plotting

 Chatterjee, Oishik


ITBench: Evaluating AI Agents across Diverse Real-World IT Automation Tasks

arXiv.org Artificial Intelligence

Realizing the vision of using AI agents to automate critical IT tasks depends on the ability to measure and understand effectiveness of proposed solutions. We introduce ITBench, a framework that offers a systematic methodology for benchmarking AI agents to address real-world IT automation tasks. Our initial release targets three key areas: Site Reliability Engineering (SRE), Compliance and Security Operations (CISO), and Financial Operations (FinOps). The design enables AI researchers to understand the challenges and opportunities of AI agents for IT automation with push-button workflows and interpretable metrics. ITBench includes an initial set of 94 real-world scenarios, which can be easily extended by community contributions. Our results show that agents powered by state-of-the-art models resolve only 13.8% of SRE scenarios, 25.2% of CISO scenarios, and 0% of FinOps scenarios. We expect ITBench to be a key enabler of AI-driven IT automation that is correct, safe, and fast.


ScriptSmith: A Unified LLM Framework for Enhancing IT Operations via Automated Bash Script Generation, Assessment, and Refinement

arXiv.org Artificial Intelligence

In the rapidly evolving landscape of site reliability engineering (SRE), the demand for efficient and effective solutions to manage and resolve issues in site and cloud applications is paramount. This paper presents an innovative approach to action automation using large language models (LLMs) for script generation, assessment, and refinement. By leveraging the capabilities of LLMs, we aim to significantly reduce the human effort involved in writing and debugging scripts, thereby enhancing the productivity of SRE teams. Our experiments focus on Bash scripts, a commonly used tool in SRE, and involve the CodeSift dataset of 100 tasks and the InterCode dataset of 153 tasks. The results show that LLMs can automatically assess and refine scripts efficiently, reducing the need for script validation in an execution environment. Results demonstrate that the framework shows an overall improvement of 7-10% in script generation.


WARM: A Weakly (+Semi) Supervised Model for Solving Math word Problems

arXiv.org Artificial Intelligence

Solving math word problems (MWPs) is an important and challenging problem in natural language processing. Existing approaches to solve MWPs require full supervision in the form of intermediate equations. However, labeling every MWP with its corresponding equations is a time-consuming and expensive task. In order to address this challenge of equation annotation, we propose a weakly supervised model for solving MWPs by requiring only the final answer as supervision. We approach this problem by first learning to generate the equation using the problem description and the final answer, which we subsequently use to train a supervised MWP solver. We propose and compare various weakly supervised techniques to learn to generate equations directly from the problem description and answer. Through extensive experiments, we demonstrate that without using equations for supervision, our approach achieves accuracy gains of 4.5% and 32% over the state-of-the-art weakly supervised approach, on the standard Math23K and AllArith datasets respectively. Additionally, we curate and release new datasets of roughly 10k MWPs each in English and in Hindi (a low resource language).These datasets are suitable for training weakly supervised models. We also present an extension of WARMM to semi-supervised learning and present further improvements on results, along with insights.


Data Programming using Semi-Supervision and Subset Selection

arXiv.org Machine Learning

The paradigm of data programming~\cite{bach2019snorkel} has shown a lot of promise in using weak supervision in the form of rules and labelling functions to learn in scenarios where labelled data is not available. Another approach which has shown a lot of promise is that of semi-supervised learning where we augment small amounts of labelled data with a large unlabelled dataset. In this work, we argue that by not using any labelled data, data programming based approaches can yield sub-optimal performance, particularly, in cases when the labelling functions are noisy. The first contribution of this work is to study a framework of joint learning which combines un-supervised consensus from labelling functions with semi-supervised learning and \emph{jointly learns a model} to efficiently use the rules/labelling functions along with semi-supervised loss functions on the feature space. Next, we also study a subset selection approach to \emph{select} the set of examples which can be used as the labelled set. We evaluate our techniques on synthetic data as well as four publicly available datasets and show improvement over state-of-the-art techniques\footnote{Source code of the paper at \url{https://github.com/ayushbits/Semi-Supervised-LFs-Subset-Selection}}.