Plotting

 Charlin, Laurent


Challenging Common Assumptions about Catastrophic Forgetting

arXiv.org Artificial Intelligence

Building learning agents that can progressively learn and accumulate knowledge is the core goal of the continual learning (CL) research field. Unfortunately, training a model on new data usually compromises the performance on past data. In the CL literature, this effect is referred to as catastrophic forgetting (CF). CF has been largely studied, and a plethora of methods have been proposed to address it on short sequences of non-overlapping tasks. In such setups, CF always leads to a quick and significant drop in performance in past tasks. Nevertheless, despite CF, recent work showed that SGD training on linear models accumulates knowledge in a CL regression setup. This phenomenon becomes especially visible when tasks reoccur. We might then wonder if DNNs trained with SGD or any standard gradient-based optimization accumulate knowledge in such a way. Such phenomena would have interesting consequences for applying DNNs to real continual scenarios. Indeed, standard gradient-based optimization methods are significantly less computationally expensive than existing CL algorithms. In this paper, we study the progressive knowledge accumulation (KA) in DNNs trained with gradient-based algorithms in long sequences of tasks with data re-occurrence. We propose a new framework, SCoLe (Scaling Continual Learning), to investigate KA and discover that catastrophic forgetting has a limited effect on DNNs trained with SGD. When trained on long sequences with data sparsely re-occurring, the overall accuracy improves, which might be counter-intuitive given the CF phenomenon. We empirically investigate KA in DNNs under various data occurrence frequencies and propose simple and scalable strategies to increase knowledge accumulation in DNNs.


Towards Compute-Optimal Transfer Learning

arXiv.org Artificial Intelligence

The field of transfer learning is undergoing a significant shift with the introduction of large pretrained models which have demonstrated strong adaptability to a variety of downstream tasks. However, the high computational and memory requirements to finetune or use these models can be a hindrance to their widespread use. In this study, we present a solution to this issue by proposing a simple yet effective way to trade computational efficiency for asymptotic performance which we define as the performance a learning algorithm achieves as compute tends to infinity. Specifically, we argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance. We evaluate our method on the Nevis'22 continual learning benchmark that offers a diverse set of transfer scenarios. Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.


Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes

arXiv.org Artificial Intelligence

Bayesian causal structure learning aims to learn a posterior distribution over directed acyclic graphs (DAGs), and the mechanisms that define the relationship between parent and child variables. By taking a Bayesian approach, it is possible to reason about the uncertainty of the causal model. The notion of modelling the uncertainty over models is particularly crucial for causal structure learning since the model could be unidentifiable when given only a finite amount of observational data. In this paper, we introduce a novel method to jointly learn the structure and mechanisms of the causal model using Variational Bayes, which we call Variational Bayes-DAG-GFlowNet (VBG). We extend the method of Bayesian causal structure learning using GFlowNets to learn not only the posterior distribution over the structure, but also the parameters of a linear-Gaussian model. Our results on simulated data suggest that VBG is competitive against several baselines in modelling the posterior over DAGs and mechanisms, while offering several advantages over existing methods, including the guarantee to sample acyclic graphs, and the flexibility to generalize to non-linear causal mechanisms.


Learning To Cut By Looking Ahead: Cutting Plane Selection via Imitation Learning

arXiv.org Machine Learning

Cutting planes are essential for solving mixed-integer linear problems (MILPs), because they facilitate bound improvements on the optimal solution value. For selecting cuts, modern solvers rely on manually designed heuristics that are tuned to gauge the potential effectiveness of cuts. We show that a greedy selection rule explicitly looking ahead to select cuts that yield the best bound improvement delivers strong decisions for cut selection - but is too expensive to be deployed in practice. In response, we propose a new neural architecture (NeuralCut) for imitation learning on the lookahead expert. Our model outperforms standard baselines for cut selection on several synthetic MILP benchmarks. Experiments with a B&C solver for neural network verification further validate our approach, and exhibit the potential of learning methods in this setting.


Comparative Study of Learning Outcomes for Online Learning Platforms

arXiv.org Artificial Intelligence

Personalization and active learning are key aspects to successful learning. These aspects are important to address in intelligent educational applications, as they help systems to adapt and close the gap between students with varying abilities, which becomes increasingly important in the context of online and distance learning. We run a comparative head-to-head study of learning outcomes for two popular online learning platforms: Platform A, which follows a traditional model delivering content over a series of lecture videos and multiple-choice quizzes, and Platform B, which creates a personalized learning environment and provides problem-solving exercises and personalized feedback. We report on the results of our study using pre- and post-assessment quizzes with participants taking courses on an introductory data science topic on two platforms. We observe a statistically significant increase in the learning outcomes on Platform B, highlighting the impact of well-designed and well-engineered technology supporting active learning and problem-based learning in online education. Moreover, the results of the self-assessment questionnaire, where participants reported on perceived learning gains, suggest that participants using Platform B improve their metacognition.


Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles

arXiv.org Artificial Intelligence

Multi-document summarization is a challenging task for which there exists little large-scale datasets. We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization, a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and empirical results---using several state-of-the-art models trained on the Multi-XScience dataset---reveal that Multi-XScience is well suited for abstractive models.


Synbols: Probing Learning Algorithms with Synthetic Datasets

arXiv.org Artificial Intelligence

Progress in the field of machine learning has been fueled by the introduction of benchmark datasets pushing the limits of existing algorithms. Enabling the design of datasets to test specific properties and failure modes of learning algorithms is thus a problem of high interest, as it has a direct impact on innovation in the field. In this sense, we introduce Synbols -- Synthetic Symbols -- a tool for rapidly generating new datasets with a rich composition of latent features rendered in low resolution images. Synbols leverages the large amount of symbols available in the Unicode standard and the wide range of artistic font provided by the open font community. Our tool's high-level interface provides a language for rapidly generating new distributions on the latent features, including various types of textures and occlusions. To showcase the versatility of Synbols, we use it to dissect the limitations and flaws in standard learning algorithms in various learning setups including supervised learning, active learning, out of distribution generalization, unsupervised representation learning, and object counting.


A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM

arXiv.org Artificial Intelligence

We present Korbit, a large-scale, open-domain, mixed-interface, dialogue-based intelligent tutoring system (ITS). Korbit uses machine learning, natural language processing and reinforcement learning to provide interactive, personalized learning online. Korbit has been designed to easily scale to thousands of subjects, by automating, standardizing and simplifying the content creation process. Unlike other ITS, a teacher can develop new learning modules for Korbit in a matter of hours. To facilitate learning across a widerange of STEM subjects, Korbit uses a mixed-interface, which includes videos, interactive dialogue-based exercises, question-answering, conceptual diagrams, mathematical exercises and gamification elements. Korbit has been built to scale to millions of students, by utilizing a state-of-the-art cloud-based micro-service architecture. Korbit launched its first course in 2019 on machine learning, and since then over 7,000 students have enrolled. Although Korbit was designed to be open-domain and highly scalable, A/B testing experiments with real-world students demonstrate that both student learning outcomes and student motivation are substantially improved compared to typical online courses.


Exact Combinatorial Optimization with Graph Convolutional Neural Networks

Neural Information Processing Systems

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose a new graph convolutional neural network model for learning branch-and-bound variable selection policies, which leverages the natural variable-constraint bipartite graph representation of mixed-integer linear programs. We train our model via imitation learning from the strong branching expert rule, and demonstrate on a series of hard problems that our approach produces policies that improve upon state-of-the-art machine-learning methods for branching and generalize to instances significantly larger than seen during training. Moreover, we improve for the first time over expert-designed branching rules implemented in a state-of-the-art solver on large problems. Papers published at the Neural Information Processing Systems Conference.


Online Continual Learning with Maximally Interfered Retrieval

arXiv.org Machine Learning

Continual learning, the setting where a learning agent is faced with a never ending stream of data, continues to be a great challenge for modern machine learning systems. In particular the online or "single-pass through the data" setting has gained attention recently as a natural setting that is difficult to tackle. Methods based on replay, either generative or from a stored memory, have been shown to be effective approaches for continual learning, matching or exceeding the state of the art in a number of standard benchmarks. These approaches typically rely on randomly selecting samples from the replay memory or from a generative model, which is suboptimal. In this work we consider a controlled sampling of memories for replay. We retrieve the samples which are most interfered, i.e. whose prediction will be most negatively impacted by the foreseen parameters update. We show a formulation for this sampling criterion in both the generative replay and the experience replay setting, producing consistent gains in performance and greatly reduced forgetting.