Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Chang Liu
Tree-to-tree Neural Networks for Program Translation
Xinyun Chen, Chang Liu, Dawn Song
Program translation is an important tool to migrate legacy code in one language into an ecosystem built in a different language. In this work, we are the first to employ deep neural networks toward tackling this problem. We observe that program translation is a modular procedure, in which a sub-tree of the source tree is translated into the corresponding target sub-tree at each step. To capture this intuition, we design a tree-to-tree neural network to translate a source tree into a target one. Meanwhile, we develop an attention mechanism for the tree-to-tree model, so that when the decoder expands one non-terminal in the target tree, the attention mechanism locates the corresponding sub-tree in the source tree to guide the expansion of the decoder. We evaluate the program translation capability of our tree-to-tree model against several state-of-the-art approaches. Compared against other neural translation models, we observe that our approach is consistently better than the baselines with a margin of up to 15 points. Further, our approach can improve the previous state-of-the-art program translation approaches by a margin of 20 points on the translation of real-world projects.
FreeAnchor: Learning to Match Anchors for Visual Object Detection
Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji, Qixiang Ye
Modern CNN-based object detectors assign anchors for ground-truth objects under the restriction of object-anchor Intersection-over-Unit (IoU). In this study, we propose a learning-to-match approach to break IoU restriction, allowing objects to match anchors in a flexible manner. Our approach, referred to as FreeAnchor, updates hand-crafted anchor assignment to "free" anchor matching by formulating detector training as a maximum likelihood estimation (MLE) procedure. FreeAnchor targets at learning features which best explain a class of objects in terms of both classification and localization. FreeAnchor is implemented by optimizing detection customized likelihood and can be fused with CNN-based detectors in a plug-and-play manner.
FreeAnchor: Learning to Match Anchors for Visual Object Detection
Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji, Qixiang Ye
Modern CNN-based object detectors assign anchors for ground-truth objects under the restriction of object-anchor Intersection-over-Unit (IoU). In this study, we propose a learning-to-match approach to break IoU restriction, allowing objects to match anchors in a flexible manner. Our approach, referred to as FreeAnchor, updates hand-crafted anchor assignment to "free" anchor matching by formulating detector training as a maximum likelihood estimation (MLE) procedure. FreeAnchor targets at learning features which best explain a class of objects in terms of both classification and localization. FreeAnchor is implemented by optimizing detection customized likelihood and can be fused with CNN-based detectors in a plug-and-play manner.
Latent Attention For If-Then Program Synthesis
Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng Chen, Dawn Song
Automatic translation from natural language descriptions into programs is a longstanding challenging problem. In this work, we consider a simple yet important sub-problem: translation from textual descriptions to If-Then programs. We devise a novel neural network architecture for this task which we train end-toend. Specifically, we introduce Latent Attention, which computes multiplicative weights for the words in the description in a two-stage process with the goal of better leveraging the natural language structures that indicate the relevant parts for predicting program elements. Our architecture reduces the error rate by 28.57% compared to prior art [3]. We also propose a one-shot learning scenario of If-Then program synthesis and simulate it with our existing dataset. We demonstrate a variation on the training procedure for this scenario that outperforms the original procedure, significantly closing the gap to the model trained with all data.