Not enough data to create a plot.
Try a different view from the menu above.
Chang, Wei-Di
Generalizable Imitation Learning Through Pre-Trained Representations
Chang, Wei-Di, Hogan, Francois, Meger, David, Dudek, Gregory
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abilities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.
For SALE: State-Action Representation Learning for Deep Reinforcement Learning
Fujimoto, Scott, Chang, Wei-Di, Smith, Edward J., Gu, Shixiang Shane, Precup, Doina, Meger, David
In the field of reinforcement learning (RL), representation learning is a proven tool for complex image-based tasks, but is often overlooked for environments with low-level states, such as physical control problems. This paper introduces SALE, a novel approach for learning embeddings that model the nuanced interaction between state and action, enabling effective representation learning from low-level states. We extensively study the design space of these embeddings and highlight important design considerations. We integrate SALE and an adaptation of checkpoints for RL into TD3 to form the TD7 algorithm, which significantly outperforms existing continuous control algorithms. On OpenAI gym benchmark tasks, TD7 has an average performance gain of 276.7% and 50.7% over TD3 at 300k and 5M time steps, respectively, and works in both the online and offline settings.
Imitation Learning from Observation through Optimal Transport
Chang, Wei-Di, Fujimoto, Scott, Meger, David, Dudek, Gregory
Imitation Learning from Observation (ILfO) is a setting in which a learner tries to imitate the behavior of an expert, using only observational data and without the direct guidance of demonstrated actions. In this paper, we re-examine the use of optimal transport for IL, in which a reward is generated based on the Wasserstein distance between the state trajectories of the learner and expert. We show that existing methods can be simplified to generate a reward function without requiring learned models or adversarial learning. Unlike many other state-of-the-art methods, our approach can be integrated with any RL algorithm, and is amenable to ILfO. We demonstrate the effectiveness of this simple approach on a variety of continuous control tasks and find that it surpasses the state of the art in the IlfO setting, achieving expert-level performance across a range of evaluation domains even when observing only a single expert trajectory without actions.
Self-Supervised Transformer Architecture for Change Detection in Radio Access Networks
Kozlov, Igor, Rivkin, Dmitriy, Chang, Wei-Di, Wu, Di, Liu, Xue, Dudek, Gregory
Radio Access Networks (RANs) for telecommunications represent large agglomerations of interconnected hardware consisting of hundreds of thousands of transmitting devices (cells). Such networks undergo frequent and often heterogeneous changes caused by network operators, who are seeking to tune their system parameters for optimal performance. The effects of such changes are challenging to predict and will become even more so with the adoption of 5G/6G networks. Therefore, RAN monitoring is vital for network operators. We propose a self-supervised learning framework that leverages self-attention and self-distillation for this task. It works by detecting changes in Performance Measurement data, a collection of time-varying metrics which reflect a set of diverse measurements of the network performance at the cell level. Experimental results show that our approach outperforms the state of the art by 4% on a real-world based dataset consisting of about hundred thousands timeseries. It also has the merits of being scalable and generalizable. This allows it to provide deep insight into the specifics of mode of operation changes while relying minimally on expert knowledge.
OptionGAN: Learning Joint Reward-Policy Options Using Generative Adversarial Inverse Reinforcement Learning
Henderson, Peter (McGill University) | Chang, Wei-Di (McGill University) | Bacon, Pierre-Luc (McGill University) | Meger, David (McGill University) | Pineau, Joelle (McGill University) | Precup, Doina (McGill University)
Reinforcement learning has shown promise in learning policies that can solve complex problems. However, manually specifying a good reward function can be difficult, especially for intricate tasks. Inverse reinforcement learning offers a useful paradigm to learn the underlying reward function directly from expert demonstrations. Yet in reality, the corpus of demonstrations may contain trajectories arising from a diverse set of underlying reward functions rather than a single one. Thus, in inverse reinforcement learning, it is useful to consider such a decomposition. The options framework in reinforcement learning is specifically designed to decompose policies in a similar light. We therefore extend the options framework and propose a method to simultaneously recover reward options in addition to policy options. We leverage adversarial methods to learn joint reward-policy options using only observed expert states. We show that this approach works well in both simple and complex continuous control tasks and shows significant performance increases in one-shot transfer learning.