Chang, Shiyu
Evidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering
Wang, Shuohang, Yu, Mo, Jiang, Jing, Zhang, Wei, Guo, Xiaoxiao, Chang, Shiyu, Wang, Zhiguo, Klinger, Tim, Tesauro, Gerald, Campbell, Murray
A popular recent approach to answering open-domain questions is to first search for question-related passages and then apply reading comprehension models to extract answers. Existing methods usually extract answers from single passages independently. But some questions require a combination of evidence from across different sources to answer correctly. In this paper, we propose two models which make use of multiple passages to generate their answers. Both use an answer-reranking approach which reorders the answer candidates generated by an existing state-of-the-art QA model. We propose two methods, namely, strength-based re-ranking and coverage-based re-ranking, to make use of the aggregated evidence from different passages to better determine the answer. Our models have achieved state-of-the-art results on three public open-domain QA datasets: Quasar-T, SearchQA and the open-domain version of TriviaQA, with about 8 percentage points of improvement over the former two datasets.
Deep Learning Based Speech Beamforming
Qian, Kaizhi, Zhang, Yang, Chang, Shiyu, Yang, Xuesong, Florencio, Dinei, Hasegawa-Johnson, Mark
Multi-channel speech enhancement with ad-hoc sensors has been a challenging task. Speech model guided beamforming algorithms are able to recover natural sounding speech, but the speech models tend to be oversimplified or the inference would otherwise be too complicated. On the other hand, deep learning based enhancement approaches are able to learn complicated speech distributions and perform efficient inference, but they are unable to deal with variable number of input channels. Also, deep learning approaches introduce a lot of errors, particularly in the presence of unseen noise types and settings. We have therefore proposed an enhancement framework called DEEPBEAM, which combines the two complementary classes of algorithms. DEEPBEAM introduces a beamforming filter to produce natural sounding speech, but the filter coefficients are determined with the help of a monaural speech enhancement neural network. Experiments on synthetic and real-world data show that DEEPBEAM is able to produce clean, dry and natural sounding speech, and is robust against unseen noise.
R 3 : Reinforced Ranker-Reader for Open-Domain Question Answering
Wang, Shuohang (Singapore Management University) | Yu, Mo (IBM Research AI) | Guo, Xiaoxiao (IBM Research AI) | Wang, Zhiguo (IBM Research AI) | Klinger, Tim (IBM Research AI) | Zhang, Wei (IBM Research AI) | Chang, Shiyu (IBM Research AI) | Tesauro, Gerry (IBM Research AI) | Zhou, Bowen (JD.COM) | Jiang, Jing (Singapore Management University)
In recent years researchers have achieved considerable success applying neural network methods to question answering (QA). These approaches have achieved state of the art results in simplified closed-domain settings such as the SQuAD (Rajpurkar et al. 2016) dataset, which provides a pre-selected passage, from which the answer to a given question may be extracted. More recently, researchers have begun to tackle open-domain QA, in which the model is given a question and access to a large corpus (e.g., wikipedia) instead of a pre-selected passage (Chen et al. 2017a). This setting is more complex as it requires large-scale search for relevant passages by an information retrieval component, combined with a reading comprehension model that โreadsโ the passages to generate an answer to the question. Performance in this setting lags well behind closed-domain performance. In this paper, we present a novel open-domain QA system called Reinforced Ranker-Reader (R 3 ), based on two algorithmic innovations. First, we propose a new pipeline for open-domain QA with a Ranker component, which learns to rank retrieved passages in terms of likelihood of extracting the ground-truth answer to a given question. Second, we propose a novel method that jointly trains the Ranker along with an answer-extraction Reader model, based on reinforcement learning. We report extensive experimental results showing that our method significantly improves on the state of the art for multiple open-domain QA datasets.
Dilated Recurrent Neural Networks
Chang, Shiyu, Zhang, Yang, Han, Wei, Yu, Mo, Guo, Xiaoxiao, Tan, Wei, Cui, Xiaodong, Witbrock, Michael, Hasegawa-Johnson, Mark A., Huang, Thomas S.
Learning with recurrent neural networks (RNNs) on long sequences is a notoriously difficult task. There are three major challenges: 1) complex dependencies, 2) vanishing and exploding gradients, and 3) efficient parallelization. In this paper, we introduce a simple yet effective RNN connection structure, the DilatedRNN, which simultaneously tackles all of these challenges. The proposed architecture is characterized by multi-resolution dilated recurrent skip connections and can be combined flexibly with diverse RNN cells. Moreover, the DilatedRNN reduces the number of parameters needed and enhances training efficiency significantly, while matching state-of-the-art performance (even with standard RNN cells) in tasks involving very long-term dependencies. To provide a theory-based quantification of the architecture's advantages, we introduce a memory capacity measure, the mean recurrent length, which is more suitable for RNNs with long skip connections than existing measures. We rigorously prove the advantages of the DilatedRNN over other recurrent neural architectures. The code for our method is publicly available at https://github.com/code-terminator/DilatedRNN.
Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification
Xu, Shuangjie, Cheng, Yu, Gu, Kang, Yang, Yang, Chang, Shiyu, Zhou, Pan
Person Re-Identification (person re-id) is a crucial task as its applications in visual surveillance and human-computer interaction. In this work, we present a novel joint Spatial and Temporal Attention Pooling Network (ASTPN) for video-based person re-identification, which enables the feature extractor to be aware of the current input video sequences, in a way that interdependency from the matching items can directly influence the computation of each other's representation. Specifically, the spatial pooling layer is able to select regions from each frame, while the attention temporal pooling performed can select informative frames over the sequence, both pooling guided by the information from distance matching. Experiments are conduced on the iLIDS-VID, PRID-2011 and MARS datasets and the results demonstrate that this approach outperforms existing state-of-art methods. We also analyze how the joint pooling in both dimensions can boost the person re-id performance more effectively than using either of them separately.
Robust Task Clustering for Deep Many-Task Learning
Yu, Mo, Guo, Xiaoxiao, Yi, Jinfeng, Chang, Shiyu, Potdar, Saloni, Tesauro, Gerald, Wang, Haoyu, Zhou, Bowen
We investigate task clustering for deep-learning based multi-task and few-shot learning in a many-task setting. We propose a new method to measure task similarities with cross-task transfer performance matrix for the deep learning scenario. Although this matrix provides us critical information regarding similarity between tasks, its asymmetric property and unreliable performance scores can affect conventional clustering methods adversely. Additionally, the uncertain task-pairs, i.e., the ones with extremely asymmetric transfer scores, may collectively mislead clustering algorithms to output an inaccurate task-partition. To overcome these limitations, we propose a novel task-clustering algorithm by using the matrix completion technique. The proposed algorithm constructs a partially-observed similarity matrix based on the certainty of cluster membership of the task-pairs. We then use a matrix completion algorithm to complete the similarity matrix. Our theoretical analysis shows that under mild constraints, the proposed algorithm will perfectly recover the underlying "true" similarity matrix with a high probability. Our results show that the new task clustering method can discover task clusters for training flexible and superior neural network models in a multi-task learning setup for sentiment classification and dialog intent classification tasks. Our task clustering approach also extends metric-based few-shot learning methods to adapt multiple metrics, which demonstrates empirical advantages when the tasks are diverse.
Fast Generation for Convolutional Autoregressive Models
Ramachandran, Prajit, Paine, Tom Le, Khorrami, Pooya, Babaeizadeh, Mohammad, Chang, Shiyu, Zhang, Yang, Hasegawa-Johnson, Mark A., Campbell, Roy H., Huang, Thomas S.
Convolutional autoregressive models have recently demonstrated state-of-the-art performance on a number of generation tasks. While fast, parallel training methods have been crucial for their success, generation is typically implemented in a na\"{i}ve fashion where redundant computations are unnecessarily repeated. This results in slow generation, making such models infeasible for production environments. In this work, we describe a method to speed up generation in convolutional autoregressive models. The key idea is to cache hidden states to avoid redundant computation. We apply our fast generation method to the Wavenet and PixelCNN++ models and achieve up to $21\times$ and $183\times$ speedups respectively.
Epitomic Image Super-Resolution
Yang, Yingzhen (University of Illinois at Urbana-Champaign) | Wang, Zhangyang (University of Illinois at Urbana-Champaign) | Wang, Zhaowen (Adobe Research) | Chang, Shiyu (University of Illinois at Urbana-Champaign) | Liu, Ding (University of Illinois at Urbana-Champaign) | Shi, Honghui (University of Illinois at Urbana-Champaign) | Huang, Thomas S. (University of Illinois at Urbana-Champaign)
We propose Epitomic Image Super-Resolution (ESR) to enhance the current internal SR methods that exploit the self-similarities in the input. Instead of local nearest neighbor patch matching used in most existing internal SR methods, ESR employs epitomic patch matching that features robustness to noise, and both local and non-local patch matching. Extensive objective and subjective evaluation demonstrate the effectiveness and advantage of ESR on various images.
$\mathbf{D^3}$: Deep Dual-Domain Based Fast Restoration of JPEG-Compressed Images
Wang, Zhangyang, Liu, Ding, Chang, Shiyu, Ling, Qing, Yang, Yingzhen, Huang, Thomas S.
In this paper, we design a Deep Dual-Domain ($\mathbf{D^3}$) based fast restoration model to remove artifacts of JPEG compressed images. It leverages the large learning capacity of deep networks, as well as the problem-specific expertise that was hardly incorporated in the past design of deep architectures. For the latter, we take into consideration both the prior knowledge of the JPEG compression scheme, and the successful practice of the sparsity-based dual-domain approach. We further design the One-Step Sparse Inference (1-SI) module, as an efficient and light-weighted feed-forward approximation of sparse coding. Extensive experiments verify the superiority of the proposed $D^3$ model over several state-of-the-art methods. Specifically, our best model is capable of outperforming the latest deep model for around 1 dB in PSNR, and is 30 times faster.
Learning A Task-Specific Deep Architecture For Clustering
Wang, Zhangyang, Chang, Shiyu, Zhou, Jiayu, Wang, Meng, Huang, Thomas S.
While sparse coding-based clustering methods have shown to be successful, their bottlenecks in both efficiency and scalability limit the practical usage. In recent years, deep learning has been proved to be a highly effective, efficient and scalable feature learning tool. In this paper, we propose to emulate the sparse coding-based clustering pipeline in the context of deep learning, leading to a carefully crafted deep model benefiting from both. A feed-forward network structure, named TAGnet, is constructed based on a graph-regularized sparse coding algorithm. It is then trained with task-specific loss functions from end to end. We discover that connecting deep learning to sparse coding benefits not only the model performance, but also its initialization and interpretation. Moreover, by introducing auxiliary clustering tasks to the intermediate feature hierarchy, we formulate DTAGnet and obtain a further performance boost. Extensive experiments demonstrate that the proposed model gains remarkable margins over several state-of-the-art methods.