Chang, Shih-Fu
Low-shot Learning via Covariance-Preserving Adversarial Augmentation Networks
Gao, Hang, Shou, Zheng, Zareian, Alireza, Zhang, Hanwang, Chang, Shih-Fu
Deep neural networks suffer from over-fitting and catastrophic forgetting when trained with small data. One natural remedy for this problem is data augmentation, which has been recently shown to be effective. However, previous works either assume that intra-class variances can always be generalized to new classes, or employ naive generation methods to hallucinate finite examples without modeling their latent distributions. In this work, we propose Covariance-Preserving Adversarial Augmentation Networks to overcome existing limits of low-shot learning. Specifically, a novel Generative Adversarial Network is designed to model the latent distribution of each novel class given its related base counterparts. Since direct estimation on novel classes can be inductively biased, we explicitly preserve covariance information as the "variability" of base examples during the generation process. Empirical results show that our model can generate realistic yet diverse examples, leading to substantial improvements on the ImageNet benchmark over the state of the art.
Heated-Up Softmax Embedding
Zhang, Xu, Yu, Felix Xinnan, Karaman, Svebor, Zhang, Wei, Chang, Shih-Fu
Metric learning aims at learning a distance which is consistent with the semantic meaning of the samples. The problem is generally solved by learning an embedding for each sample such that the embeddings of samples of the same category are compact while the embeddings of samples of different categories are spread-out in the feature space. We study the features extracted from the second last layer of a deep neural network based classifier trained with the cross entropy loss on top of the softmax layer. We show that training classifiers with different temperature values of softmax function leads to features with different levels of compactness. Leveraging these insights, we propose a "heating-up" strategy to train a classifier with increasing temperatures, leading the corresponding embeddings to achieve state-of-the-art performance on a variety of metric learning benchmarks.
Compact Nonlinear Maps and Circulant Extensions
Yu, Felix X., Kumar, Sanjiv, Rowley, Henry, Chang, Shih-Fu
Kernel approximation via nonlinear random feature maps is widely used in speeding up kernel machines. There are two main challenges for the conventional kernel approximation methods. First, before performing kernel approximation, a good kernel has to be chosen. Picking a good kernel is a very challenging problem in itself. Second, high-dimensional maps are often required in order to achieve good performance. This leads to high computational cost in both generating the nonlinear maps, and in the subsequent learning and prediction process. In this work, we propose to optimize the nonlinear maps directly with respect to the classification objective in a data-dependent fashion. The proposed approach achieves kernel approximation and kernel learning in a joint framework. This leads to much more compact maps without hurting the performance. As a by-product, the same framework can also be used to achieve more compact kernel maps to approximate a known kernel. We also introduce Circulant Nonlinear Maps, which uses a circulant-structured projection matrix to speed up the nonlinear maps for high-dimensional data.
Low-Rank Similarity Metric Learning in High Dimensions
Liu, Wei (IBM T. J. Watson Research Center) | Mu, Cun (Columbia University) | Ji, Rongrong (Xiamen University) | Ma, Shiqian (The Chinese University of Hong Kong) | Smith, John R. (IBM T. J. Watson Research Center) | Chang, Shih-Fu (Columbia University)
Metric learning has become a widespreadly used tool in machine learning. To reduce expensive costs brought in by increasing dimensionality, low-rank metric learning arises as it can be more economical in storage and computation. However, existing low-rank metric learning algorithms usually adopt nonconvex objectives, and are hence sensitive to the choice of a heuristic low-rank basis. In this paper, we propose a novel low-rank metric learning algorithm to yield bilinear similarity functions. This algorithm scales linearly with input dimensionality in both space and time, therefore applicable to high-dimensional data domains. A convex objective free of heuristics is formulated by leveraging trace norm regularization to promote low-rankness. Crucially, we prove that all globally optimal metric solutions must retain a certain low-rank structure, which enables our algorithm to decompose the high-dimensional learning task into two steps: an SVD-based projection and a metric learning problem with reduced dimensionality. The latter step can be tackled efficiently through employing a linearized Alternating Direction Method of Multipliers. The efficacy of the proposed algorithm is demonstrated through experiments performed on four benchmark datasets with tens of thousands of dimensions.
On Learning from Label Proportions
Yu, Felix X., Choromanski, Krzysztof, Kumar, Sanjiv, Jebara, Tony, Chang, Shih-Fu
Learning from Label Proportions (LLP) is a learning setting, where the training data is provided in groups, or "bags", and only the proportion of each class in each bag is known. The task is to learn a model to predict the class labels of the individual instances. LLP has broad applications in political science, marketing, healthcare, and computer vision. This work answers the fundamental question, when and why LLP is possible, by introducing a general framework, Empirical Proportion Risk Minimization (EPRM). EPRM learns an instance label classifier to match the given label proportions on the training data. Our result is based on a two-step analysis. First, we provide a VC bound on the generalization error of the bag proportions. We show that the bag sample complexity is only mildly sensitive to the bag size. Second, we show that under some mild assumptions, good bag proportion prediction guarantees good instance label prediction. The results together provide a formal guarantee that the individual labels can indeed be learned in the LLP setting. We discuss applications of the analysis, including justification of LLP algorithms, learning with population proportions, and a paradigm for learning algorithms with privacy guarantees. We also demonstrate the feasibility of LLP based on a case study in real-world setting: predicting income based on census data.
Discrete Graph Hashing
Liu, Wei, Mu, Cun, Kumar, Sanjiv, Chang, Shih-Fu
Hashing has emerged as a popular technique for fast nearest neighbor search in gigantic databases. In particular, learning based hashing has received considerable attention due to its appealing storage and search efficiency. However, the performance of most unsupervised learning based hashing methods deteriorates rapidly as the hash code length increases. We argue that the degraded performance is due to inferior optimization procedures used to achieve discrete binary codes. This paper presents a graph-based unsupervised hashing model to preserve the neighborhood structure of massive data in a discrete code space. We cast the graph hashing problem into a discrete optimization framework which directly learns the binary codes. A tractable alternating maximization algorithm is then proposed to explicitly deal with the discrete constraints, yielding high-quality codes to well capture the local neighborhoods. Extensive experiments performed on four large datasets with up to one million samples show that our discrete optimization based graph hashing method obtains superior search accuracy over state-of-the-art unsupervised hashing methods, especially for longer codes.
Circulant Binary Embedding
Yu, Felix X., Kumar, Sanjiv, Gong, Yunchao, Chang, Shih-Fu
Binary embedding of high-dimensional data requires long codes to preserve the discriminative power of the input space. Traditional binary coding methods often suffer from very high computation and storage costs in such a scenario. To address this problem, we propose Circulant Binary Embedding (CBE) which generates binary codes by projecting the data with a circulant matrix. The circulant structure enables the use of Fast Fourier Transformation to speed up the computation. Compared to methods that use unstructured matrices, the proposed method improves the time complexity from $\mathcal{O}(d^2)$ to $\mathcal{O}(d\log{d})$, and the space complexity from $\mathcal{O}(d^2)$ to $\mathcal{O}(d)$ where $d$ is the input dimensionality. We also propose a novel time-frequency alternating optimization to learn data-dependent circulant projections, which alternatively minimizes the objective in original and Fourier domains. We show by extensive experiments that the proposed approach gives much better performance than the state-of-the-art approaches for fixed time, and provides much faster computation with no performance degradation for fixed number of bits.
Analyzing the Harmonic Structure in Graph-Based Learning
Wu, Xiao-Ming, Li, Zhenguo, Chang, Shih-Fu
We show that either explicitly or implicitly, various well-known graph-based models exhibit a common significant \emph{harmonic} structure in its target function -- the value of a vertex is approximately the weighted average of the values of its adjacent neighbors. Understanding of such structure and analysis of the loss defined over such structure help reveal important properties of the target function over a graph. In this paper, we show that the variation of the target function across a cut can be upper and lower bounded by the ratio of its harmonic loss and the cut cost. We use this to develop an analytical tool and analyze 5 popular models in graph-based learning: absorbing random walks, partially absorbing random walks, hitting times, pseudo-inverse of graph Laplacian, and eigenvectors of the Laplacian matrices. Our analysis well explains several open questions of these models reported in the literature. Furthermore, it provides theoretical justifications and guidelines for their practical use. Simulations on synthetic and real datasets support our analysis.
$\propto$SVM for learning with label proportions
Yu, Felix X., Liu, Dong, Kumar, Sanjiv, Jebara, Tony, Chang, Shih-Fu
We study the problem of learning with label proportions in which the training data is provided in groups and only the proportion of each class in each group is known. We propose a new method called proportion-SVM, or $\propto$SVM, which explicitly models the latent unknown instance labels together with the known group label proportions in a large-margin framework. Unlike the existing works, our approach avoids making restrictive assumptions about the data. The $\propto$SVM model leads to a non-convex integer programming problem. In order to solve it efficiently, we propose two algorithms: one based on simple alternating optimization and the other based on a convex relaxation. Extensive experiments on standard datasets show that $\propto$SVM outperforms the state-of-the-art, especially for larger group sizes.
On the Difficulty of Nearest Neighbor Search
He, Junfeng, Kumar, Sanjiv, Chang, Shih-Fu
Fast approximate nearest neighbor (NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is (approximate) nearest neighbor search in a given data set? And which data properties affect the difficulty of nearest neighbor search and how? This paper introduces the first concrete measure called Relative Contrast that can be used to evaluate the influence of several crucial data characteristics such as dimensionality, sparsity, and database size simultaneously in arbitrary normed metric spaces. Moreover, we present a theoretical analysis to prove how the difficulty measure (relative contrast) determines/affects the complexity of Local Sensitive Hashing, a popular approximate NN search method. Relative contrast also provides an explanation for a family of heuristic hashing algorithms with good practical performance based on PCA. Finally, we show that most of the previous works in measuring NN search meaningfulness/difficulty can be derived as special asymptotic cases for dense vectors of the proposed measure.