Plotting

 Chang, Ee-Chien


Lie Detector: Unified Backdoor Detection via Cross-Examination Framework

arXiv.org Artificial Intelligence

Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.


AttacKG+:Boosting Attack Knowledge Graph Construction with Large Language Models

arXiv.org Artificial Intelligence

Attack knowledge graph construction seeks to convert textual cyber threat intelligence (CTI) reports into structured representations, portraying the evolutionary traces of cyber attacks. Even though previous research has proposed various methods to construct attack knowledge graphs, they generally suffer from limited generalization capability to diverse knowledge types as well as requirement of expertise in model design and tuning. Addressing these limitations, we seek to utilize Large Language Models (LLMs), which have achieved enormous success in a broad range of tasks given exceptional capabilities in both language understanding and zero-shot task fulfillment. Thus, we propose a fully automatic LLM-based framework to construct attack knowledge graphs named: AttacKG+. Our framework consists of four consecutive modules: rewriter, parser, identifier, and summarizer, each of which is implemented by instruction prompting and in-context learning empowered by LLMs. Furthermore, we upgrade the existing attack knowledge schema and propose a comprehensive version. We represent a cyber attack as a temporally unfolding event, each temporal step of which encapsulates three layers of representation, including behavior graph, MITRE TTP labels, and state summary. Extensive evaluation demonstrates that: 1) our formulation seamlessly satisfies the information needs in threat event analysis, 2) our construction framework is effective in faithfully and accurately extracting the information defined by AttacKG+, and 3) our attack graph directly benefits downstream security practices such as attack reconstruction. All the code and datasets will be released upon acceptance.


Semantic Mirror Jailbreak: Genetic Algorithm Based Jailbreak Prompts Against Open-source LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs), used in creative writing, code generation, and translation, generate text based on input sequences but are vulnerable to jailbreak attacks, where crafted prompts induce harmful outputs. Most jailbreak prompt methods use a combination of jailbreak templates followed by questions to ask to create jailbreak prompts. However, existing jailbreak prompt designs generally suffer from excessive semantic differences, resulting in an inability to resist defenses that use simple semantic metrics as thresholds. Jailbreak prompts are semantically more varied than the original questions used for queries. In this paper, we introduce a Semantic Mirror Jailbreak (SMJ) approach that bypasses LLMs by generating jailbreak prompts that are semantically similar to the original question. We model the search for jailbreak prompts that satisfy both semantic similarity and jailbreak validity as a multi-objective optimization problem and employ a standardized set of genetic algorithms for generating eligible prompts. Compared to the baseline AutoDAN-GA, SMJ achieves attack success rates (ASR) that are at most 35.4% higher without ONION defense and 85.2% higher with ONION defense. SMJ's better performance in all three semantic meaningfulness metrics of Jailbreak Prompt, Similarity, and Outlier, also means that SMJ is resistant to defenses that use those metrics as thresholds.


Domain Bridge: Generative model-based domain forensic for black-box models

arXiv.org Artificial Intelligence

In forensic investigations of machine learning models, techniques that determine a model's data domain play an essential role, with prior work relying on large-scale corpora like ImageNet to approximate the target model's domain. Although such methods are effective in finding broad domains, they often struggle in identifying finer-grained classes within those domains. In this paper, we introduce an enhanced approach to determine not just the general data domain (e.g., human face) but also its specific attributes (e.g., wearing glasses). Our approach uses an image embedding model as the encoder and a generative model as the decoder. Beginning with a coarse-grained description, the decoder generates a set of images, which are then presented to the unknown target model. Successful classifications by the model guide the encoder to refine the description, which in turn, are used to produce a more specific set of images in the subsequent iteration. This iterative refinement narrows down the exact class of interest. A key strength of our approach lies in leveraging the expansive dataset, LAION-5B, on which the generative model Stable Diffusion is trained. This enlarges our search space beyond traditional corpora, such as ImageNet. Empirical results showcase our method's performance in identifying specific attributes of a model's input domain, paving the way for more detailed forensic analyses of deep learning models.


Using Large Language Models for Cybersecurity Capture-The-Flag Challenges and Certification Questions

arXiv.org Artificial Intelligence

The assessment of cybersecurity Capture-The-Flag (CTF) exercises involves participants finding text strings or ``flags'' by exploiting system vulnerabilities. Large Language Models (LLMs) are natural-language models trained on vast amounts of words to understand and generate text; they can perform well on many CTF challenges. Such LLMs are freely available to students. In the context of CTF exercises in the classroom, this raises concerns about academic integrity. Educators must understand LLMs' capabilities to modify their teaching to accommodate generative AI assistance. This research investigates the effectiveness of LLMs, particularly in the realm of CTF challenges and questions. Here we evaluate three popular LLMs, OpenAI ChatGPT, Google Bard, and Microsoft Bing. First, we assess the LLMs' question-answering performance on five Cisco certifications with varying difficulty levels. Next, we qualitatively study the LLMs' abilities in solving CTF challenges to understand their limitations. We report on the experience of using the LLMs for seven test cases in all five types of CTF challenges. In addition, we demonstrate how jailbreak prompts can bypass and break LLMs' ethical safeguards. The paper concludes by discussing LLM's impact on CTF exercises and its implications.


Adaptive Attractors: A Defense Strategy against ML Adversarial Collusion Attacks

arXiv.org Artificial Intelligence

In the seller-buyer setting on machine learning models, the seller generates different copies based on the original model and distributes them to different buyers, such that adversarial samples generated on one buyer's copy would likely not work on other copies. A known approach achieves this using attractor-based rewriter which injects different attractors to different copies. This induces different adversarial regions in different copies, making adversarial samples generated on one copy not replicable on others. In this paper, we focus on a scenario where multiple malicious buyers collude to attack. We first give two formulations and conduct empirical studies to analyze effectiveness of collusion attack under different assumptions on the attacker's capabilities and properties of the attractors. We observe that existing attractor-based methods do not effectively mislead the colluders in the sense that adversarial samples found are influenced more by the original model instead of the attractors as number of colluders increases (Figure 2). Based on this observation, we propose using adaptive attractors whose weight is guided by a U-shape curve to cover the shortfalls. Experimentation results show that when using our approach, the attack success rate of a collusion attack converges to around 15% even when lots of copies are applied for collusion. In contrast, when using the existing attractor-based rewriter with fixed weight, the attack success rate increases linearly with the number of copies used for collusion.


Mitigating Adversarial Attacks by Distributing Different Copies to Different Users

arXiv.org Artificial Intelligence

Machine learning models are vulnerable to adversarial attacks. In this paper, we consider the scenario where a model is distributed to multiple buyers, among which a malicious buyer attempts to attack another buyer. The malicious buyer probes its copy of the model to search for adversarial samples and then presents the found samples to the victim's copy of the model in order to replicate the attack. We point out that by distributing different copies of the model to different buyers, we can mitigate the attack such that adversarial samples found on one copy would not work on another copy. We observed that training a model with different randomness indeed mitigates such replication to a certain degree. However, there is no guarantee and retraining is computationally expensive. A number of works extended the retraining method to enhance the differences among models. However, a very limited number of models can be produced using such methods and the computational cost becomes even higher. Therefore, we propose a flexible parameter rewriting method that directly modifies the model's parameters. This method does not require additional training and is able to generate a large number of copies in a more controllable manner, where each copy induces different adversarial regions. Experimentation studies show that rewriting can significantly mitigate the attacks while retaining high classification accuracy. For instance, on GTSRB dataset with respect to Hop Skip Jump attack, using attractor-based rewriter can reduce the success rate of replicating the attack to 0.5% while independently training copies with different randomness can reduce the success rate to 6.5%. From this study, we believe that there are many further directions worth exploring.


Finding Meaningful Distributions of ML Black-boxes under Forensic Investigation

arXiv.org Artificial Intelligence

Given a poorly documented neural network model, we take the perspective of a forensic investigator who wants to find out the model's data domain (e.g. whether on face images or traffic signs). Although existing methods such as membership inference and model inversion can be used to uncover some information about an unknown model, they still require knowledge of the data domain to start with. In this paper, we propose solving this problem by leveraging on comprehensive corpus such as ImageNet to select a meaningful distribution that is close to the original training distribution and leads to high performance in follow-up investigations. The corpus comprises two components, a large dataset of samples and meta information such as hierarchical structure and textual information on the samples. Our goal is to select a set of samples from the corpus for the given model. The core of our method is an objective function that considers two criteria on the selected samples: the model functional properties (derived from the dataset), and semantics (derived from the metadata). We also give an algorithm to efficiently search the large space of all possible subsets w.r.t. the objective function. Experimentation results show that the proposed method is effective. For example, cloning a given model (originally trained with CIFAR-10) by using Caltech 101 can achieve 45.5% accuracy. By using datasets selected by our method, the accuracy is improved to 72.0%.


Projecting Non-Fungible Token (NFT) Collections: A Contextual Generative Approach

arXiv.org Artificial Intelligence

Non-fungible tokens (NFTs) are digital assets stored on a blockchain representing real-world objects such as art or collectibles. An NFT collection comprises numerous tokens; each token can be transacted multiple times. It is a multibillion-dollar market where the number of collections has more than doubled in 2022. In this paper, we want to obtain a generative model that, given the early transactions history (first quarter Q1) of a newly minted collection, generates subsequent transactions (quarters Q2, Q3, Q4), where the generative model is trained using the transaction history of a few mature collections. The goal is to use the generated transactions to project the potential market value of this newly minted collection over the next few quarters. A technical challenge exists in that different collections have diverse characteristics, and the generative model should generate based on the appropriate "contexts" of the collection. Our method takes a two-step approach. First, it employs unsupervised learning on the early transactions to extract characteristics (which we call contexts) of NFT collections. Next, it generates future transactions of each token based on these contexts and the early transactions, projecting the target collection's potential market value. Comprehensive experiments demonstrate our contextual generative approach's NFT projection capabilities.


Tracing the Origin of Adversarial Attack for Forensic Investigation and Deterrence

arXiv.org Artificial Intelligence

Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy $\mathcal{M}_i$ and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source $\mathcal{M}_i$. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.