Goto

Collaborating Authors

 Chang, Chia-Yuan


DISPEL: Domain Generalization via Domain-Specific Liberating

arXiv.org Artificial Intelligence

Domain generalization aims to learn a generalization model that can perform well on unseen test domains by only training on limited source domains. However, existing domain generalization approaches often bring in prediction-irrelevant noise or require the collection of domain labels. To address these challenges, we consider the domain generalization problem from a different perspective by categorizing underlying feature groups into domain-shared and domain-specific features. Nevertheless, the domain-specific features are difficult to be identified and distinguished from the input data. In this work, we propose DomaIn-SPEcific Liberating (DISPEL), a post-processing fine-grained masking approach that can filter out undefined and indistinguishable domain-specific features in the embedding space. Specifically, DISPEL utilizes a mask generator that produces a unique mask for each input data to filter domain-specific features. The DISPEL framework is highly flexible to be applied to any fine-tuned models. We derive a generalization error bound to guarantee the generalization performance by optimizing a designed objective loss. The experimental results on five benchmarks demonstrate DISPEL outperforms existing methods and can further generalize various algorithms.


Towards Assumption-free Bias Mitigation

arXiv.org Artificial Intelligence

Despite the impressive prediction ability, machine learning models show discrimination towards certain demographics and suffer from unfair prediction behaviors. To alleviate the discrimination, extensive studies focus on eliminating the unequal distribution of sensitive attributes via multiple approaches. However, due to privacy concerns, sensitive attributes are often either unavailable or missing in real-world scenarios. Therefore, several existing works alleviate the bias without sensitive attributes. Those studies face challenges, either in inaccurate predictions of sensitive attributes or the need to mitigate unequal distribution of manually defined non-sensitive attributes related to bias. The latter requires strong assumptions about the correlation between sensitive and non-sensitive attributes. As data distribution and task goals vary, the strong assumption on non-sensitive attributes may not be valid and require domain expertise. In this work, we propose an assumption-free framework to detect the related attributes automatically by modeling feature interaction for bias mitigation. The proposed framework aims to mitigate the unfair impact of identified biased feature interactions. Experimental results on four real-world datasets demonstrate that our proposed framework can significantly alleviate unfair prediction behaviors by considering biased feature interactions.


Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint

arXiv.org Artificial Intelligence

Clinical trials are indispensable in developing new treatments, but they face obstacles in patient recruitment and retention, hindering the enrollment of necessary participants. To tackle these challenges, deep learning frameworks have been created to match patients to trials. These frameworks calculate the similarity between patients and clinical trial eligibility criteria, considering the discrepancy between inclusion and exclusion criteria. Recent studies have shown that these frameworks outperform earlier approaches. However, deep learning models may raise fairness issues in patient-trial matching when certain sensitive groups of individuals are underrepresented in clinical trials, leading to incomplete or inaccurate data and potential harm. To tackle the issue of fairness, this work proposes a fair patient-trial matching framework by generating a patient-criterion level fairness constraint. The proposed framework considers the inconsistency between the embedding of inclusion and exclusion criteria among patients of different sensitive groups. The experimental results on real-world patient-trial and patient-criterion matching tasks demonstrate that the proposed framework can successfully alleviate the predictions that tend to be biased.


Mitigating Relational Bias on Knowledge Graphs

arXiv.org Artificial Intelligence

Knowledge graph data are prevalent in real-world applications, and knowledge graph neural networks (KGNNs) are essential techniques for knowledge graph representation learning. Although KGNN effectively models the structural information from knowledge graphs, these frameworks amplify the underlying data bias that leads to discrimination towards certain groups or individuals in resulting applications. Additionally, as existing debiasing approaches mainly focus on the entity-wise bias, eliminating the multi-hop relational bias that pervasively exists in knowledge graphs remains an open question. However, it is very challenging to eliminate relational bias due to the sparsity of the paths that generate the bias and the non-linear proximity structure of knowledge graphs. To tackle the challenges, we propose Fair-KGNN, a KGNN framework that simultaneously alleviates multi-hop bias and preserves the proximity information of entity-to-relation in knowledge graphs. The proposed framework is generalizable to mitigate the relational bias for all types of KGNN. We develop two instances of Fair-KGNN incorporating with two state-of-the-art KGNN models, RGCN and CompGCN, to mitigate gender-occupation and nationality-salary bias. The experiments carried out on three benchmark knowledge graph datasets demonstrate that the Fair-KGNN can effectively mitigate unfair situations during representation learning while preserving the predictive performance of KGNN models.