Not enough data to create a plot.
Try a different view from the menu above.
Chandra, Satish
Agentic Bug Reproduction for Effective Automated Program Repair at Google
Cheng, Runxiang, Tufano, Michele, Cito, Jürgen, Cambronero, José, Rondon, Pat, Wei, Renyao, Sun, Aaron, Chandra, Satish
Bug reports often lack sufficient detail for developers to reproduce and fix the underlying defects. Bug Reproduction Tests (BRTs), tests that fail when the bug is present and pass when it has been resolved, are crucial for debugging, but they are rarely included in bug reports, both in open-source and in industrial settings. Thus, automatically generating BRTs from bug reports has the potential to accelerate the debugging process and lower time to repair. This paper investigates automated BRT generation within an industry setting, specifically at Google, focusing on the challenges of a large-scale, proprietary codebase and considering real-world industry bugs extracted from Google's internal issue tracker. We adapt and evaluate a state-of-the-art BRT generation technique, LIBRO, and present our agent-based approach, BRT Agent, which makes use of a fine-tuned Large Language Model (LLM) for code editing. Our BRT Agent significantly outperforms LIBRO, achieving a 28% plausible BRT generation rate, compared to 10% by LIBRO, on 80 human-reported bugs from Google's internal issue tracker. We further investigate the practical value of generated BRTs by integrating them with an Automated Program Repair (APR) system at Google. Our results show that providing BRTs to the APR system results in 30% more bugs with plausible fixes. Additionally, we introduce Ensemble Pass Rate (EPR), a metric which leverages the generated BRTs to select the most promising fixes from all fixes generated by APR system. Our evaluation on EPR for Top-K and threshold-based fix selections demonstrates promising results and trade-offs. For example, EPR correctly selects a plausible fix from a pool of 20 candidates in 70% of cases, based on its top-1 ranking.
Evaluating Agent-based Program Repair at Google
Rondon, Pat, Wei, Renyao, Cambronero, José, Cito, Jürgen, Sun, Aaron, Sanyam, Siddhant, Tufano, Michele, Chandra, Satish
Agent-based program repair offers to automatically resolve complex bugs end-to-end by combining the planning, tool use, and code generation abilities of modern LLMs. Recent work has explored the use of agent-based repair approaches on the popular open-source SWE-Bench, a collection of bugs from highly-rated GitHub Python projects. In addition, various agentic approaches such as SWE-Agent have been proposed to solve bugs in this benchmark. This paper explores the viability of using an agentic approach to address bugs in an enterprise context. To investigate this, we curate an evaluation set of 178 bugs drawn from Google's issue tracking system. This dataset spans both human-reported (78) and machine-reported bugs (100). To establish a repair performance baseline on this benchmark, we implement Passerine, an agent similar in spirit to SWE-Agent that can work within Google's development environment. We show that with 20 trajectory samples and Gemini 1.5 Pro, Passerine can produce a patch that passes bug tests (i.e., plausible) for 73% of machine-reported and 25.6% of human-reported bugs in our evaluation set. After manual examination, we found that 43% of machine-reported bugs and 17.9% of human-reported bugs have at least one patch that is semantically equivalent to the ground-truth patch. These results establish a baseline on an industrially relevant benchmark, which as we show, contains bugs drawn from a different distribution -- in terms of language diversity, size, and spread of changes, etc. -- compared to those in the popular SWE-Bench dataset.
Counterfactual Explanations for Models of Code
Cito, Jürgen, Dillig, Isil, Murali, Vijayaraghavan, Chandra, Satish
Machine learning (ML) models play an increasingly prevalent role in many software engineering tasks. However, because most models are now powered by opaque deep neural networks, it can be difficult for developers to understand why the model came to a certain conclusion and how to act upon the model's prediction. Motivated by this problem, this paper explores counterfactual explanations for models of source code. Such counterfactual explanations constitute minimal changes to the source code under which the model "changes its mind". We integrate counterfactual explanation generation to models of source code in a real-world setting. We describe considerations that impact both the ability to find realistic and plausible counterfactual explanations, as well as the usefulness of such explanation to the user of the model. In a series of experiments we investigate the efficacy of our approach on three different models, each based on a BERT-like architecture operating over source code.
Code Prediction by Feeding Trees to Transformers
Kim, Seohyun, Zhao, Jinman, Tian, Yuchi, Chandra, Satish
We advance the state-of-the-art in the accuracy of code prediction (next token prediction) used in autocomplete systems. First, we report that using the recently proposed Transformer architecture even out-of-the-box outperforms previous neural and non-neural systems for code prediction. We then show that by making the Transformer architecture aware of the syntactic structure of code, we further increase the margin by which a Transformer-based system outperforms previous systems. With this, it outperforms the accuracy of an RNN-based system (similar to Hellendoorn et al. 2018) by 18.3%, the Deep3 system (Raychev et al 2016) by 14.1%, and an adaptation of Code2Seq (Alon et al., 2018) for code prediction by 14.4%. We present in the paper several ways of communicating the code structure to the Transformer, which is fundamentally built for processing sequence data. We provide a comprehensive experimental evaluation of our proposal, along with alternative design choices, on a standard Python dataset, as well as on a Facebook internal Python corpus. Our code and data preparation pipeline will be available in open source.