Goto

Collaborating Authors

 Chandar, Sarath


Conditionally Optimistic Exploration for Cooperative Deep Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Efficient exploration is critical in cooperative deep Multi-Agent Reinforcement Learning (MARL). In this work, we propose an exploration method that effectively encourages cooperative exploration based on the idea of sequential action-computation scheme. The high-level intuition is that to perform optimism-based exploration, agents would explore cooperative strategies if each agent's optimism estimate captures a structured dependency relationship with other agents. Assuming agents compute actions following a sequential order at \textit{each environment timestep}, we provide a perspective to view MARL as tree search iterations by considering agents as nodes at different depths of the search tree. Inspired by the theoretically justified tree search algorithm UCT (Upper Confidence bounds applied to Trees), we develop a method called Conditionally Optimistic Exploration (COE). COE augments each agent's state-action value estimate with an action-conditioned optimistic bonus derived from the visitation count of the global state and joint actions of preceding agents. COE is performed during training and disabled at deployment, making it compatible with any value decomposition method for centralized training with decentralized execution. Experiments across various cooperative MARL benchmarks show that COE outperforms current state-of-the-art exploration methods on hard-exploration tasks.


Thompson sampling for improved exploration in GFlowNets

arXiv.org Artificial Intelligence

Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy. Unlike other algorithms for hierarchical sampling that optimize a variational bound, GFlowNet algorithms can stably run off-policy, which can be advantageous for discovering modes of the target distribution. Despite this flexibility in the choice of behaviour policy, the optimal way of efficiently selecting trajectories for training has not yet been systematically explored. In this paper, we view the choice of trajectories for training as an active learning problem and approach it using Bayesian techniques inspired by methods for multi-armed bandits. The proposed algorithm, Thompson sampling GFlowNets (TS-GFN), maintains an approximate posterior distribution over policies and samples trajectories from this posterior for training. We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.


Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models

arXiv.org Artificial Intelligence

While pre-trained language models (PLMs) have shown evidence of acquiring vast amounts of knowledge, it remains unclear how much of this parametric knowledge is actually usable in performing downstream tasks. We propose a systematic framework to measure parametric knowledge utilization in PLMs. Our framework first extracts knowledge from a PLM's parameters and subsequently constructs a downstream task around this extracted knowledge. Performance on this task thus depends exclusively on utilizing the model's possessed knowledge, avoiding confounding factors like insufficient signal. As an instantiation, we study factual knowledge of PLMs and measure utilization across 125M to 13B parameter PLMs. We observe that: (1) PLMs exhibit two gaps - in acquired vs. utilized knowledge, (2) they show limited robustness in utilizing knowledge under distribution shifts, and (3) larger models close the acquired knowledge gap but the utilized knowledge gap remains. Overall, our study provides insights into PLMs' capabilities beyond their acquired knowledge.


Should We Attend More or Less? Modulating Attention for Fairness

arXiv.org Artificial Intelligence

The abundance of annotated data in natural language processing (NLP) poses both opportunities and challenges. While it enables the development of high-performing models for a variety of tasks, it also poses the risk of models learning harmful biases from the data, such as gender stereotypes. In this work, we investigate the role of attention, a widely-used technique in current state-of-the-art NLP models, in the propagation of social biases. Specifically, we study the relationship between the entropy of the attention distribution and the model's performance and fairness. We then propose a novel method for modulating attention weights to improve model fairness after training. Since our method is only applied post-training and pre-inference, it is an intra-processing method and is, therefore, less computationally expensive than existing in-processing and pre-processing approaches. Our results show an increase in fairness and minimal performance loss on different text classification and generation tasks using language models of varying sizes. WARNING: This work uses language that is offensive.


SAMSON: Sharpness-Aware Minimization Scaled by Outlier Normalization for Improving DNN Generalization and Robustness

arXiv.org Artificial Intelligence

Energy-efficient deep neural network (DNN) accelerators are prone to non-idealities that degrade DNN performance at inference time. To mitigate such degradation, existing methods typically add perturbations to the DNN weights during training to simulate inference on noisy hardware. However, this often requires knowledge about the target hardware and leads to a trade-off between DNN performance and robustness, decreasing the former to increase the latter. In this work, we show that applying sharpness-aware training, by optimizing for both the loss value and loss sharpness, significantly improves robustness to noisy hardware at inference time without relying on any assumptions about the target hardware. In particular, we propose a new adaptive sharpness-aware method that conditions the worst-case perturbation of a given weight not only on its magnitude but also on the range of the weight distribution. This is achieved by performing sharpness-aware minimization scaled by outlier minimization (SAMSON). Our approach outperforms existing sharpness-aware training methods both in terms of model generalization performance in noiseless regimes and robustness in noisy settings, as measured on several architectures and datasets.


PatchBlender: A Motion Prior for Video Transformers

arXiv.org Artificial Intelligence

Transformers have become one of the dominant architectures in the field of computer vision. However, there are yet several challenges when applying such architectures to video data. Most notably, these models struggle to model the temporal patterns of video data effectively. Directly targeting this issue, we introduce Patch-Blender, a learnable blending function that operates over patch embeddings across the temporal dimension of the latent space. We show that our method is successful at enabling vision transformers to encode the temporal component of video data. On Something-Something v2 and MOVi-A, we show that our method improves the baseline performance of video Transformers. PatchBlender has the advantage of being compatible with almost any Transformer architecture and since it is learnable, the model can adaptively turn on or off the prior. It is also extremely lightweight compute-wise, 0.005% the GFLOPs of a ViT-B. The Transformer (Vaswani et al., 2017) has become one of the dominant architectures of many fields in machine learning (Brown et al., 2020; Devlin et al., 2019; Dosovitskiy et al., 2020). Initially proposed for natural language processing (Vaswani et al., 2017), it has since been shown to outperform convolutional neural networks in the image domain (Dosovitskiy et al., 2020). Adapting such vision models to the video domain has been straightforward and resulted in new state-of-the-art results (Arnab et al., 2021). Since then, multiple Transformer based methods have been proposed (Bertasius et al., 2021; Fan et al., 2021; Liu et al., 2021), making steady progress on a variety of challenges in the video domain.


Deep Learning on a Healthy Data Diet: Finding Important Examples for Fairness

arXiv.org Artificial Intelligence

Data-driven predictive solutions predominant in commercial applications tend to suffer from biases and stereotypes, which raises equity concerns. Prediction models may discover, use, or amplify spurious correlations based on gender or other protected personal characteristics, thus discriminating against marginalized groups. Mitigating gender bias has become an important research focus in natural language processing (NLP) and is an area where annotated corpora are available. Data augmentation reduces gender bias by adding counterfactual examples to the training dataset. In this work, we show that some of the examples in the augmented dataset can be not important or even harmful for fairness. We hence propose a general method for pruning both the factual and counterfactual examples to maximize the model's fairness as measured by the demographic parity, equality of opportunity, and equality of odds. The fairness achieved by our method surpasses that of data augmentation on three text classification datasets, using no more than half of the examples in the augmented dataset. Our experiments are conducted using models of varying sizes and pre-training settings.


TAG: Task-based Accumulated Gradients for Lifelong learning

arXiv.org Artificial Intelligence

When an agent encounters a continual stream of new tasks in the lifelong learning setting, it leverages the knowledge it gained from the earlier tasks to help learn the new tasks better. In such a scenario, identifying an efficient knowledge representation becomes a challenging problem. Most research works propose to either store a subset of examples from the past tasks in a replay buffer, dedicate a separate set of parameters to each task or penalize excessive updates over parameters by introducing a regularization term. While existing methods employ the general task-agnostic stochastic gradient descent update rule, we propose a task-aware optimizer that adapts the learning rate based on the relatedness among tasks. We utilize the directions taken by the parameters during the updates by additively accumulating the gradients specific to each task. These task-based accumulated gradients act as a knowledge base that is maintained and updated throughout the stream. We empirically show that our proposed adaptive learning rate not only accounts for catastrophic forgetting but also exhibits knowledge transfer. We also show that our method performs better than several state-of-the-art methods in lifelong learning on complex datasets. Moreover, our method can also be combined with the existing methods and achieve substantial improvement in performance. Lifelong learning (LLL), also known as continual learning, is a setting where an agent continuously learns from data belonging to different tasks (Parisi et al., 2019). Here, the goal is to maximize performance on all the tasks arriving in a stream without replaying the entire datasets from past tasks (Riemer et al., 2018). Approaches proposed in this setting involve investigating the stability-plasticity dilemma (Mermillod et al., 2013) in different ways where stability refers to preventing the forgetting of past knowledge and plasticity refers to accumulating new knowledge by learning new tasks (Mermillod et al., 2013; Delange et al., 2021). 1 Unlike human beings, who can efficiently assess the correctness and applicability of the past knowledge (Chen & Liu, 2018), neural networks and other machine learning models often face various issues in this setting. Whenever data from a new task arrives, these models often tend to forget the previously obtained knowledge due to dependency on the input data distribution, limited capacity, diversity among tasks, etc.


Improving Sample Efficiency of Value Based Models Using Attention and Vision Transformers

arXiv.org Artificial Intelligence

Much of recent Deep Reinforcement Learning success is owed to the neural architecture's potential to learn and use effective internal representations of the world. While many current algorithms access a simulator to train with a large amount of data, in realistic settings, including while playing games that may be played against people, collecting experience can be quite costly. In this paper, we introduce a deep reinforcement learning architecture whose purpose is to increase sample efficiency without sacrificing performance. We design this architecture by incorporating advances achieved in recent years in the field of Natural Language Processing and Computer Vision. Specifically, we propose a visually attentive model that uses transformers to learn a self-attention mechanism on the feature maps of the state representation, while simultaneously optimizing return. We demonstrate empirically that this architecture improves sample complexity for several Atari environments, while also achieving better performance in some of the games.


An Empirical Investigation of the Role of Pre-training in Lifelong Learning

arXiv.org Artificial Intelligence

The lifelong learning paradigm in machine learning is an attractive alternative to the more prominent isolated learning scheme not only due to its resemblance to biological learning, but also its potential to reduce energy waste by obviating excessive model re-training. A key challenge to this paradigm is the phenomenon of catastrophic forgetting. With the increasing popularity and success of pre-trained models in machine learning, we pose the question: What role does pre-training play in lifelong learning, specifically with respect to catastrophic forgetting? We investigate existing methods in the context of large, pre-trained models and evaluate their performance on a variety of text and image classification tasks, including a large-scale study using a novel dataset of 15 diverse NLP tasks. Across all settings, we observe that generic pre-training implicitly alleviates the effects of catastrophic forgetting when learning multiple tasks sequentially compared to randomly initialized models. We then further investigate why pre-training alleviates forgetting in this setting. We study this phenomenon by analyzing the loss landscape, finding that pre-trained weights appear to ease forgetting by leading to wider minima. Based on this insight, we propose jointly optimizing for current task loss and loss basin sharpness in order to explicitly encourage wider basins during sequential fine-tuning. We show that this optimization approach leads to performance comparable to the state-of-the-art in task-sequential continual learning across multiple settings, without retaining a memory that scales in size with the number of tasks. The contemporary machine learning paradigm concentrates on isolated learning (Chen & Liu, 2018) i.e., learning a model from scratch for every new task. In contrast, the lifelong learning (LL) paradigm (Thrun, 1996) defines a biologically-inspired learning approach where models learn tasks in sequence, ideally preserving past knowledge and leveraging it to efficiently learn new tasks. LL has the added benefit of avoiding periodical re-training of models from scratch to learn novel tasks or adapt to new data, with the potential to reduce both computational and energy requirements (Hazelwood et al., 2018; Strubell et al., 2019; Schwartz et al., 2020). In the context of modern machine learning where state-of-the-art models are powered by deep neural networks, catastrophic forgetting has been identified as a key challenge to implementing successful LL systems (McCloskey & Cohen, 1989; French, 1999). Catastrophic forgetting happens when the model forgets knowledge learned in previous tasks as information relevant to the current task is incorporated.