Plotting

 Chambers, America


Statistical Topic Models for Multi-Label Document Classification

arXiv.org Machine Learning

Machine learning approaches to multi-label document classification have to date largely relied on discriminative modeling techniques such as support vector machines. A drawback of these approaches is that performance rapidly drops off as the total number of labels and the number of labels per document increase. This problem is amplified when the label frequencies exhibit the type of highly skewed distributions that are often observed in real-world datasets. In this paper we investigate a class of generative statistical topic models for multi-label documents that associate individual word tokens with different labels. We investigate the advantages of this approach relative to discriminative models, particularly with respect to classification problems involving large numbers of relatively rare labels. We compare the performance of generative and discriminative approaches on document labeling tasks ranging from datasets with several thousand labels to datasets with tens of labels. The experimental results indicate that probabilistic generative models can achieve competitive multi-label classification performance compared to discriminative methods, and have advantages for datasets with many labels and skewed label frequencies.


Learning concept graphs from text with stick-breaking priors

Neural Information Processing Systems

We present a generative probabilistic model for learning general graph structures, which we term concept graphs, from text. Concept graphs provide a visual summary of the thematic content of a collection of documents-a task that is difficult to accomplish using only keyword search. The proposed model can learn different types of concept graph structures and is capable of utilizing partial prior knowledge about graph structure as well as labeled documents. We describe a generative model that is based on a stick-breaking process for graphs, and a Markov Chain Monte Carlo inference procedure. Experiments on simulated data show that the model can recover known graph structure when learning in both unsupervised and semi-supervised modes. We also show that the proposed model is competitive in terms of empirical log likelihood with existing structure-based topic models (such as hPAM and hLDA) on real-world text data sets. Finally, we illustrate the application of the model to the problem of updating Wikipedia category graphs.