Chakraborty, Tanmoy
DiffQue: Estimating Relative Difficulty of Questions in Community Question Answering Services
Thukral, Deepak, Pandey, Adesh, Gupta, Rishabh, Goyal, Vikram, Chakraborty, Tanmoy
Automatic estimation of relative difficulty of a pair of questions is an important and challenging problem in community question answering (CQA) services. There are limited studies which addressed this problem. Past studies mostly leveraged expertise of users answering the questions and barely considered other properties of CQA services such as metadata of users and posts, temporal information and textual content. In this paper, we propose DiffQue, a novel system that maps this problem to a network-aided edge directionality prediction problem. DiffQue starts by constructing a novel network structure that captures different notions of difficulties among a pair of questions. It then measures the relative difficulty of two questions by predicting the direction of a (virtual) edge connecting these two questions in the network. It leverages features extracted from the network structure, metadata of users/posts and textual description of questions and answers. Experiments on datasets obtained from two CQA sites (further divided into four datasets) with human annotated ground-truth show that DiffQue outperforms four state-of-the-art methods by a significant margin (28.77% higher F1 score and 28.72% higher AUC than the best baseline). As opposed to the other baselines, (i) DiffQue appropriately responds to the training noise, (ii) DiffQue is capable of adapting multiple domains (CQA datasets), and (iii) DiffQue can efficiently handle 'cold start' problem which may arise due to the lack of information for newly posted questions or newly arrived users.
Heterogeneous Edge Embeddings for Friend Recommendation
Verma, Janu, Gupta, Srishti, Mukherjee, Debdoot, Chakraborty, Tanmoy
We propose a friend recommendation system (an application of link prediction) using edge embeddings on social networks. Most real-world social networks are multi-graphs, where different kinds of relationships (e.g. chat, friendship) are possible between a pair of users. Existing network embedding techniques do not leverage signals from different edge types and thus perform inadequately on link prediction in such networks. We propose a method to mine network representation that effectively exploits heterogeneity in multi-graphs. We evaluate our model on a real-world, active social network where this system is deployed for friend recommendation for millions of users. Our method outperforms various state-of-the-art baselines on Hike's social network in terms of accuracy as well as user satisfaction.
Multi-task Learning for Target-dependent Sentiment Classification
Gupta, Divam, Singh, Kushagra, Chakrabarti, Soumen, Chakraborty, Tanmoy
Detecting and aggregating sentiments toward people, organizations, and events expressed in unstructured social media have become critical text mining operations. Early systems detected sentiments over whole passages, whereas more recently, target-specific sentiments have been of greater interest. In this paper, we present MTTDSC, a multi-task target-dependent sentiment classification system that is informed by feature representation learnt for the related auxiliary task of passage-level sentiment classification. The auxiliary task uses a gated recurrent unit (GRU) and pools GRU states, followed by an auxiliary fully-connected layer that outputs passage-level predictions. In the main task, these GRUs contribute auxiliary per-token representations over and above word embeddings. The main task has its own, separate GRUs. The auxiliary and main GRUs send their states to a different fully connected layer, trained for the main task. Extensive experiments using two auxiliary datasets and three benchmark datasets (of which one is new, introduced by us) for the main task demonstrate that MTTDSC outperforms state-of-the-art baselines. Using word-level sensitivity analysis, we present anecdotal evidence that prior systems can make incorrect target-specific predictions because they miss sentiments expressed by words independent of target.
GIRNet: Interleaved Multi-Task Recurrent State Sequence Models
Gupta, Divam, Chakraborty, Tanmoy, Chakrabarti, Soumen
In several natural language tasks, labeled sequences are available in separate domains (say, languages), but the goal is to label sequences with mixed domain (such as code-switched text). Or, we may have available models for labeling whole passages (say, with sentiments), which we would like to exploit toward better position-specific label inference (say, target-dependent sentiment annotation). A key characteristic shared across such tasks is that different positions in a primary instance can benefit from different `experts' trained from auxiliary data, but labeled primary instances are scarce, and labeling the best expert for each position entails unacceptable cognitive burden. We propose GITNet, a unified position-sensitive multi-task recurrent neural network (RNN) architecture for such applications. Auxiliary and primary tasks need not share training instances. Auxiliary RNNs are trained over auxiliary instances. A primary instance is also submitted to each auxiliary RNN, but their state sequences are gated and merged into a novel composite state sequence tailored to the primary inference task. Our approach is in sharp contrast to recent multi-task networks like the cross-stitch and sluice network, which do not control state transfer at such fine granularity. We demonstrate the superiority of GIRNet using three applications: sentiment classification of code-switched passages, part-of-speech tagging of code-switched text, and target position-sensitive annotation of sentiment in monolingual passages. In all cases, we establish new state-of-the-art performance beyond recent competitive baselines.
EC3: Combining Clustering and Classification for Ensemble Learning
Chakraborty, Tanmoy
Classification and clustering algorithms have been proved to be successful individually in different contexts. Both of them have their own advantages and limitations. For instance, although classification algorithms are more powerful than clustering methods in predicting class labels of objects, they do not perform well when there is a lack of sufficient manually labeled reliable data. On the other hand, although clustering algorithms do not produce label information for objects, they provide supplementary constraints (e.g., if two objects are clustered together, it is more likely that the same label is assigned to both of them) that one can leverage for label prediction of a set of unknown objects. Therefore, systematic utilization of both these types of algorithms together can lead to better prediction performance. In this paper, We propose a novel algorithm, called EC3 that merges classification and clustering together in order to support both binary and multi-class classification. EC3 is based on a principled combination of multiple classification and multiple clustering methods using an optimization function. We theoretically show the convexity and optimality of the problem and solve it by block coordinate descent method. We additionally propose iEC3, a variant of EC3 that handles imbalanced training data. We perform an extensive experimental analysis by comparing EC3 and iEC3 with 14 baseline methods (7 well-known standalone classifiers, 5 ensemble classifiers, and 2 existing methods that merge classification and clustering) on 13 standard benchmark datasets. We show that our methods outperform other baselines for every single dataset, achieving at most 10% higher AUC. Moreover our methods are faster (1.21 times faster than the best baseline), more resilient to noise and class imbalance than the best baseline method.
Semantic Interpretation of Social Network Communities
Maheshwari, Tushar (Indian Institute of Information Technology - Chittoor) | Reganti, Aishwarya N. (Indian Institute of Information Technology - Chittoor) | Kumar, Upendra (Indian Institute of Information Technology - Chittoor) | Chakraborty, Tanmoy (University of Maryland, College Park) | Das, Amitava (Indian Institute of Information Technology - Chittoor)
A community in a social network is considered to be a group of nodes densely connected internally and sparsely connected externally.Although previous work intensely studied network topology within a community, its semantic interpretation is hardly understood. In this paper, we attempt to understand whether individuals in a community possess similar Personalities, Values and Ethical background. Finally, we show that Personality and Values models could be used as features to discover more accurate community structure compared to the one obtained from only network information.
TweetGrep: Weakly Supervised Joint Retrieval and Sentiment Analysis of Topical Tweets
Guha, Satarupa (International Institute of Information Technology, Hyderabad) | Chakraborty, Tanmoy (University of Maryland, College Park) | Datta, Samik (Flipkart Internet Pvt. Ltd.) | Kumar, Mohit (Flipkart Internet Pvt. Ltd.) | Varma, Vasudeva (International Institute of Information Technology, Hyderabad)
An overwhelming amount of data is generated everyday onsocial media, encompassing a wide spectrum of topics. With almost every business decision depending on customer opinion, mining of social media data needs to be quick and easy.For a data analyst to keep up with the agility and the scale of the data, it is impossible to bank on fully supervised techniques to mine topics and their associated sentiments from social media. Motivated by this, we propose a weakly supervised approach (named, TweetGrep) that lets the data analyst easily define a topic by few keywords and adapt a generic sentiment classifier to the topic – by jointly modeling topics and sentiments using label regularization. Experiments with diverse datasets show that TweetGrep beats the state-of-the-art models for both the tasks of retrieving topical tweet sand analyzing the sentiment of the tweets (average improvement of 4.97% and 6.91% respectively in terms of area under the curve). Further, we show that TweetGrep can also be adopted in a novel task of hashtag disambiguation, which significantly outperforms the baseline methods.