Not enough data to create a plot.
Try a different view from the menu above.
Chakraborty, Rohit
Applying Tabular Deep Learning Models to Estimate Crash Injury Types of Young Motorcyclists
Somvanshi, Shriyank, Tusti, Anannya Ghosh, Chakraborty, Rohit, Das, Subasish
Young motorcyclists, particularly those aged 15 to 24 years old, face a heightened risk of severe crashes due to factors such as speeding, traffic violations, and helmet usage. This study aims to identify key factors influencing crash severity by analyzing 10,726 young motorcyclist crashes in Texas from 2017 to 2022. Two advanced tabular deep learning models, ARMNet and MambaNet, were employed, using an advanced resampling technique to address class imbalance. The models were trained to classify crashes into three severity levels, Fatal or Severe, Moderate or Minor, and No Injury. ARMNet achieved an accuracy of 87 percent, outperforming 86 percent of Mambanet, with both models excelling in predicting severe and no injury crashes while facing challenges in moderate crash classification. Key findings highlight the significant influence of demographic, environmental, and behavioral factors on crash outcomes. The study underscores the need for targeted interventions, including stricter helmet enforcement and educational programs customized to young motorcyclists. These insights provide valuable guidance for policymakers in developing evidence-based strategies to enhance motorcyclist safety and reduce crash severity.
Crash Severity Analysis of Child Bicyclists using Arm-Net and MambaNet
Somvanshi, Shriyank, Chakraborty, Rohit, Das, Subasish, Dutta, Anandi K
Child bicyclists (14 years and younger) are among the most vulnerable road users, often experiencing severe injuries or fatalities in crashes. This study analyzed 2,394 child bicyclist crashes in Texas from 2017 to 2022 using two deep tabular learning models (ARM-Net and MambaNet). To address the issue of data imbalance, the SMOTEENN technique was applied, resulting in balanced datasets that facilitated accurate crash severity predictions across three categories: Fatal/Severe (KA), Moderate/Minor (BC), and No Injury (O). The findings revealed that MambaNet outperformed ARM-Net, achieving higher precision, recall, F1-scores, and accuracy, particularly in the KA and O categories. Both models highlighted challenges in distinguishing BC crashes due to overlapping characteristics. These insights underscored the value of advanced tabular deep learning methods and balanced datasets in understanding crash severity. While limitations such as reliance on categorical data exist, future research could explore continuous variables and real-time behavioral data to enhance predictive modeling and crash mitigation strategies.