Not enough data to create a plot.
Try a different view from the menu above.
Chakraborty, Anirban
Learning non-Gaussian spatial distributions via Bayesian transport maps with parametric shrinkage
Chakraborty, Anirban, Katzfuss, Matthias
Many applications, including climate-model analysis and stochastic weather generators, require learning or emulating the distribution of a high-dimensional and non-Gaussian spatial field based on relatively few training samples. To address this challenge, a recently proposed Bayesian transport map (BTM) approach consists of a triangular transport map with nonparametric Gaussian-process (GP) components, which is trained to transform the distribution of interest distribution to a Gaussian reference distribution. To improve the performance of this existing BTM, we propose to shrink the map components toward a ``base'' parametric Gaussian family combined with a Vecchia approximation for scalability. The resulting ShrinkTM approach is more accurate than the existing BTM, especially for small numbers of training samples. It can even outperform the ``base'' family when trained on a single sample of the spatial field. We demonstrate the advantage of ShrinkTM though numerical experiments on simulated data and on climate-model output.
Sketch-guided Image Inpainting with Partial Discrete Diffusion Process
Sharma, Nakul, Tripathi, Aditay, Chakraborty, Anirban, Mishra, Anand
In this work, we study the task of sketch-guided image inpainting. Unlike the well-explored natural language-guided image inpainting, which excels in capturing semantic details, the relatively less-studied sketch-guided inpainting offers greater user control in specifying the object's shape and pose to be inpainted. As one of the early solutions to this task, we introduce a novel partial discrete diffusion process (PDDP). The forward pass of the PDDP corrupts the masked regions of the image and the backward pass reconstructs these masked regions conditioned on hand-drawn sketches using our proposed sketch-guided bi-directional transformer. The proposed novel transformer module accepts two inputs -- the image containing the masked region to be inpainted and the query sketch to model the reverse diffusion process. This strategy effectively addresses the domain gap between sketches and natural images, thereby, enhancing the quality of inpainting results. In the absence of a large-scale dataset specific to this task, we synthesize a dataset from the MS-COCO to train and extensively evaluate our proposed framework against various competent approaches in the literature. The qualitative and quantitative results and user studies establish that the proposed method inpaints realistic objects that fit the context in terms of the visual appearance of the provided sketch. To aid further research, we have made our code publicly available at https://github.com/vl2g/Sketch-Inpainting .
Scalable Model-Based Gaussian Process Clustering
Chakraborty, Anirban, Chakraborty, Abhisek
Gaussian process is an indispensable tool in clustering functional data, owing to it's flexibility and inherent uncertainty quantification. However, when the functional data is observed over a large grid (say, of length $p$), Gaussian process clustering quickly renders itself infeasible, incurring $O(p^2)$ space complexity and $O(p^3)$ time complexity per iteration; and thus prohibiting it's natural adaptation to large environmental applications. To ensure scalability of Gaussian process clustering in such applications, we propose to embed the popular Vecchia approximation for Gaussian processes at the heart of the clustering task, provide crucial theoretical insights towards algorithmic design, and finally develop a computationally efficient expectation maximization (EM) algorithm. Empirical evidence of the utility of our proposal is provided via simulations and analysis of polar temperature anomaly (\href{https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series}{noaa.gov}) data-sets.
DAD++: Improved Data-free Test Time Adversarial Defense
Nayak, Gaurav Kumar, Khatri, Inder, Randive, Shubham, Rawal, Ruchit, Chakraborty, Anirban
With the increasing deployment of deep neural networks in safety-critical applications such as self-driving cars, medical imaging, anomaly detection, etc., adversarial robustness has become a crucial concern in the reliability of these networks in real-world scenarios. A plethora of works based on adversarial training and regularization-based techniques have been proposed to make these deep networks robust against adversarial attacks. However, these methods require either retraining models or training them from scratch, making them infeasible to defend pre-trained models when access to training data is restricted. To address this problem, we propose a test time Data-free Adversarial Defense (DAD) containing detection and correction frameworks. Moreover, to further improve the efficacy of the correction framework in cases when the detector is under-confident, we propose a soft-detection scheme (dubbed as "DAD++"). We conduct a wide range of experiments and ablations on several datasets and network architectures to show the efficacy of our proposed approach. Furthermore, we demonstrate the applicability of our approach in imparting adversarial defense at test time under data-free (or data-efficient) applications/setups, such as Data-free Knowledge Distillation and Source-free Unsupervised Domain Adaptation, as well as Semi-supervised classification frameworks. We observe that in all the experiments and applications, our DAD++ gives an impressive performance against various adversarial attacks with a minimal drop in clean accuracy. The source code is available at: https://github.com/vcl-iisc/Improved-Data-free-Test-Time-Adversarial-Defense
Data-free Defense of Black Box Models Against Adversarial Attacks
Nayak, Gaurav Kumar, Khatri, Inder, Rawal, Ruchit, Chakraborty, Anirban
Several companies often safeguard their trained deep models (i.e., details of architecture, learnt weights, training details etc.) from third-party users by exposing them only as black boxes through APIs. Moreover, they may not even provide access to the training data due to proprietary reasons or sensitivity concerns. In this work, we propose a novel defense mechanism for black box models against adversarial attacks in a data-free set up. We construct synthetic data via generative model and train surrogate network using model stealing techniques. To minimize adversarial contamination on perturbed samples, we propose 'wavelet noise remover' (WNR) that performs discrete wavelet decomposition on input images and carefully select only a few important coefficients determined by our 'wavelet coefficient selection module' (WCSM). To recover the high-frequency content of the image after noise removal via WNR, we further train a 'regenerator' network with the objective of retrieving the coefficients such that the reconstructed image yields similar to original predictions on the surrogate model. At test time, WNR combined with trained regenerator network is prepended to the black box network, resulting in a high boost in adversarial accuracy. Our method improves the adversarial accuracy on CIFAR-10 by 38.98% and 32.01% on state-of-the-art Auto Attack compared to baseline, even when the attacker uses surrogate architecture (Alexnet-half and Alexnet) similar to the black box architecture (Alexnet) with same model stealing strategy as defender. The code is available at https://github.com/vcl-iisc/data-free-black-box-defense
Federated Learning on Heterogeneous Data via Adaptive Self-Distillation
Yashwanth, M., Nayak, Gaurav Kumar, Singh, Arya, Simmhan, Yogesh, Chakraborty, Anirban
Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a global model by aggregating the locally trained models without sharing any local training data. In practice, there can often be substantial heterogeneity (e.g., class imbalance) across the local data distributions observed by each of these clients. Under such non-iid data distributions across clients, FL suffers from the 'client-drift' problem where every client converges to its own local optimum. This results in slower convergence and poor performance of the aggregated model. To address this limitation, we propose a novel regularization technique based on adaptive self-distillation (ASD) for training models on the client side. Our regularization scheme adaptively adjusts to the client's training data based on: (1) the closeness of the local model's predictions with that of the global model and (2) the client's label distribution. The proposed regularization can be easily integrated atop existing, state-of-the-art FL algorithms leading to a further boost in the performance of these off-the-shelf methods. We demonstrate the efficacy of our proposed FL approach through extensive experiments on multiple real-world benchmarks (including datasets with common corruptions and perturbations) and show substantial gains in performance over the state-of-the-art methods.
CoNMix for Source-free Single and Multi-target Domain Adaptation
Kumar, Vikash, Lal, Rohit, Patil, Himanshu, Chakraborty, Anirban
This work introduces the novel task of Source-free Multi-target Domain Adaptation and proposes adaptation framework comprising of \textbf{Co}nsistency with \textbf{N}uclear-Norm Maximization and \textbf{Mix}Up knowledge distillation (\textit{CoNMix}) as a solution to this problem. The main motive of this work is to solve for Single and Multi target Domain Adaptation (SMTDA) for the source-free paradigm, which enforces a constraint where the labeled source data is not available during target adaptation due to various privacy-related restrictions on data sharing. The source-free approach leverages target pseudo labels, which can be noisy, to improve the target adaptation. We introduce consistency between label preserving augmentations and utilize pseudo label refinement methods to reduce noisy pseudo labels. Further, we propose novel MixUp Knowledge Distillation (MKD) for better generalization on multiple target domains using various source-free STDA models. We also show that the Vision Transformer (VT) backbone gives better feature representation with improved domain transferability and class discriminability. Our proposed framework achieves the state-of-the-art (SOTA) results in various paradigms of source-free STDA and MTDA settings on popular domain adaptation datasets like Office-Home, Office-Caltech, and DomainNet. Project Page: https://sites.google.com/view/conmix-vcl
Holistic Approach to Measure Sample-level Adversarial Vulnerability and its Utility in Building Trustworthy Systems
Nayak, Gaurav Kumar, Rawal, Ruchit, Lal, Rohit, Patil, Himanshu, Chakraborty, Anirban
Adversarial attack perturbs an image with an imperceptible noise, leading to incorrect model prediction. Recently, a few works showed inherent bias associated with such attack (robustness bias), where certain subgroups in a dataset (e.g. based on class, gender, etc.) are less robust than others. This bias not only persists even after adversarial training, but often results in severe performance discrepancies across these subgroups. Existing works characterize the subgroup's robustness bias by only checking individual sample's proximity to the decision boundary. In this work, we argue that this measure alone is not sufficient and validate our argument via extensive experimental analysis. It has been observed that adversarial attacks often corrupt the high-frequency components of the input image. We, therefore, propose a holistic approach for quantifying adversarial vulnerability of a sample by combining these different perspectives, i.e., degree of model's reliance on high-frequency features and the (conventional) sample-distance to the decision boundary. We demonstrate that by reliably estimating adversarial vulnerability at the sample level using the proposed holistic metric, it is possible to develop a trustworthy system where humans can be alerted about the incoming samples that are highly likely to be misclassified at test time. This is achieved with better precision when our holistic metric is used over individual measures. To further corroborate the utility of the proposed holistic approach, we perform knowledge distillation in a limited-sample setting. We observe that the student network trained with the subset of samples selected using our combined metric performs better than both the competing baselines, viz., where samples are selected randomly or based on their distances to the decision boundary.
Beyond Classification: Knowledge Distillation using Multi-Object Impressions
Nayak, Gaurav Kumar, Keswani, Monish, Seshadri, Sharan, Chakraborty, Anirban
Knowledge Distillation (KD) utilizes training data as a transfer set to transfer knowledge from a complex network (Teacher) to a smaller network (Student). Several works have recently identified many scenarios where the training data may not be available due to data privacy or sensitivity concerns and have proposed solutions under this restrictive constraint for the classification task. Unlike existing works, we, for the first time, solve a much more challenging problem, i.e., "KD for object detection with zero knowledge about the training data and its statistics". Our proposed approach prepares pseudo-targets and synthesizes corresponding samples (termed as "Multi-Object Impressions"), using only the pretrained Faster RCNN Teacher network. We use this pseudo-dataset as a transfer set to conduct zero-shot KD for object detection. We demonstrate the efficacy of our proposed method through several ablations and extensive experiments on benchmark datasets like KITTI, Pascal and COCO. Our approach with no training samples, achieves a respectable mAP of 64.2% and 55.5% on the student with same and half capacity while performing distillation from a Resnet-18 Teacher of 73.3% mAP on KITTI.
Data Impressions: Mining Deep Models to Extract Samples for Data-free Applications
Nayak, Gaurav Kumar, Mopuri, Konda Reddy, Jain, Saksham, Chakraborty, Anirban
Pretrained deep models hold their learnt knowledge in the form of the model parameters. These parameters act as memory for the trained models and help them generalize well on unseen data. However, in absence of training data, the utility of a trained model is merely limited to either inference or better initialization towards a target task. In this paper, we go further and extract synthetic data by leveraging the learnt model parameters. We dub them "Data Impressions", which act as proxy to the training data and can be used to realize a variety of tasks. These are useful in scenarios where only the pretrained models are available and the training data is not shared (e.g., due to privacy or sensitivity concerns). We show the applicability of data impressions in solving several computer vision tasks such as unsupervised domain adaptation, continual learning as well as knowledge distillation. We also study the adversarial robustness of the lightweight models trained via knowledge distillation using these data impressions. Further, we demonstrate the efficacy of data impressions in generating UAPs with better fooling rates. Extensive experiments performed on several benchmark datasets demonstrate competitive performance achieved using data impressions in absence of the original training data.