Goto

Collaborating Authors

 Cevher, Volkan


Generalization of Scaled Deep ResNets in the Mean-Field Regime

arXiv.org Artificial Intelligence

Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of which the gradient flow is described by a partial differential equation in the large-neural network limit, i.e., the mean-field regime. To derive the generalization bounds under this setting, our analysis necessitates a shift from the conventional time-invariant Gram matrix employed in the lazy training regime to a time-variant, distribution-dependent version. To this end, we provide a global lower bound on the minimum eigenvalue of the Gram matrix under the mean-field regime. Besides, for the traceability of the dynamic of Kullback-Leibler (KL) divergence, we establish the linear convergence of the empirical error and estimate the upper bound of the KL divergence over parameters distribution. Finally, we build the uniform convergence for generalization bound via Rademacher complexity. Our results offer new insights into the generalization ability of deep ResNet beyond the lazy training regime and contribute to advancing the understanding of the fundamental properties of deep neural networks. Deep neural networks (DNNs) have achieved great success empirically, a notable illustration of which is ResNet (He et al., 2016), a groundbreaking network architecture with skip connections.


Truly No-Regret Learning in Constrained MDPs

arXiv.org Machine Learning

Constrained Markov decision processes (CMDPs) are a common way to model safety constraints in reinforcement learning. State-of-the-art methods for efficiently solving CMDPs are based on primal-dual algorithms. For these algorithms, all currently known regret bounds allow for error cancellations -- one can compensate for a constraint violation in one round with a strict constraint satisfaction in another. This makes the online learning process unsafe since it only guarantees safety for the final (mixture) policy but not during learning. As Efroni et al. (2020) pointed out, it is an open question whether primal-dual algorithms can provably achieve sublinear regret if we do not allow error cancellations. In this paper, we give the first affirmative answer. We first generalize a result on last-iterate convergence of regularized primal-dual schemes to CMDPs with multiple constraints. Building upon this insight, we propose a model-based primal-dual algorithm to learn in an unknown CMDP. We prove that our algorithm achieves sublinear regret without error cancellations.


Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are susceptible to Jailbreaking attacks, which aim to extract harmful information by subtly modifying the attack query. As defense mechanisms evolve, directly obtaining harmful information becomes increasingly challenging for Jailbreaking attacks. In this work, inspired by human practices of indirect context to elicit harmful information, we focus on a new attack form called Contextual Interaction Attack. The idea relies on the autoregressive nature of the generation process in LLMs. We contend that the prior context--the information preceding the attack query--plays a pivotal role in enabling potent Jailbreaking attacks. Specifically, we propose an approach that leverages preliminary question-answer pairs to interact with the LLM. By doing so, we guide the responses of the model toward revealing the 'desired' harmful information. We conduct experiments on four different LLMs and demonstrate the efficacy of this attack, which is black-box and can also transfer across LLMs. We believe this can lead to further developments and understanding of the context vector in LLMs.


Multilinear Operator Networks

arXiv.org Artificial Intelligence

Despite the remarkable capabilities of deep neural networks in image recognition, the dependence on activation functions remains a largely unexplored area and has yet to be eliminated. On the other hand, Polynomial Networks is a class of models that does not require activation functions, but have yet to perform on par with modern architectures. In this work, we aim close this gap and propose MONet, which relies solely on multilinear operators. The core layer of MONet, called Mu-Layer, captures multiplicative interactions of the elements of the input token. MONet captures high-degree interactions of the input elements and we demonstrate the efficacy of our approach on a series of image recognition and scientific computing benchmarks. The proposed model outperforms prior polynomial networks and performs on par with modern architectures. We believe that MONet can inspire further research on models that use entirely multilinear operations.


Efficient local linearity regularization to overcome catastrophic overfitting

arXiv.org Artificial Intelligence

For models trained with multi-step AT, it has been observed that the loss function behaves locally linearly with respect to the input, this is however lost in single-step AT. To address CO in single-step AT, several methods have been proposed to enforce local linearity of the loss via regularization. Instead, in this work, we introduce a regularization term, called ELLE, to mitigate CO effectively and efficiently in classical AT evaluations, as well as some more difficult regimes, e.g., large adversarial perturbations and long training schedules. Our regularization term can be theoretically linked to curvature of the loss function and is computationally cheaper than previous methods by avoiding Double Backpropagation. Our thorough experimental validation demonstrates that our work does not suffer from CO, even in challenging settings where previous works suffer from it. We also notice that adapting our regularization parameter during training (ELLE-A) greatly improves the performance, specially in large ฯต setups. Adversarial Training (AT) (Madry et al., 2018) and TRADES (Zhang et al., 2019) have emerged as prominent training methods for training robust architectures. However, these training mechanisms involve solving an inner optimization problem per training step, often requiring an order of magnitude more time per iteration in comparison to standard training (Xu et al., 2023). To address the computational overhead per iteration, the solution of the inner maximization problem in a single step is commonly utilized. While this approach offers efficiency gains, it is also known to be unstable (Tramรจr et al., 2018; Shafahi et al., 2019; Wong et al., 2020; de Jorge et al., 2022). CO is characterized by a sharp decline (even down to 0%) in multi-step test adversarial accuracy and a corresponding spike (up to 100%) in single-step train adversarial accuracy. Explicitly enforcing local linearity has been shown to allow reducing the number of steps needed to solve the inner maximization problem, while avoiding CO and gradient obfuscation (Qin et al., 2019; Andriushchenko and Flammarion, 2020). Nevertheless, all existing methods incur a 3 runtime due to Double Backpropagation (Etmann, 2019) Given this time-consuming operation to avoid CO, a natural question arises: Can we efficiently overcome catastrophic overfitting when enforcing local linearity of the loss? Partially done at Universidad Carlos III de Madrid, correspondance: elias.abadrocamora@epfl.ch We train with our method ELLE and its adaptive regularization variant ELLE-A.


MADA: Meta-Adaptive Optimizers through hyper-gradient Descent

arXiv.org Artificial Intelligence

Since Adam was introduced, several novel adaptive optimizers for deep learning have been proposed. These optimizers typically excel in some tasks but may not outperform Adam uniformly across all tasks. In this work, we introduce Meta-Adaptive Optimizers (MADA), a unified optimizer framework that can generalize several known optimizers and dynamically learn the most suitable one during training. The key idea in MADA is to parameterize the space of optimizers and search through it using hyper-gradient descent. Numerical results suggest that MADA is robust against sub-optimally tuned hyper-parameters, and outperforms Adam, Lion, and Adan with their default hyper-parameters, often even with optimized hyper-parameters. We also propose AVGrad, a variant of AMSGrad where the maximum operator is replaced with averaging, and observe that it performs better within MADA. Finally, we provide a convergence analysis to show that interpolation of optimizers (specifically, AVGrad and Adam) can improve their error bounds (up to constants), hinting at an advantage for meta-optimizers.


Stable Nonconvex-Nonconcave Training via Linear Interpolation

arXiv.org Artificial Intelligence

This paper presents a theoretical analysis of linear interpolation as a principled method for stabilizing (large-scale) neural network training. We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear interpolation can help by leveraging the theory of nonexpansive operators. We construct a new optimization scheme called relaxed approximate proximal point (RAPP), which is the first 1-SCLI method to achieve last iterate convergence rates for $\rho$-comonotone problems while only requiring $\rho > -\tfrac{1}{2L}$. The construction extends to constrained and regularized settings. By replacing the inner optimizer in RAPP we rediscover the family of Lookahead algorithms for which we establish convergence in cohypomonotone problems even when the base optimizer is taken to be gradient descent ascent. The range of cohypomonotone problems in which Lookahead converges is further expanded by exploiting that Lookahead inherits the properties of the base optimizer. We corroborate the results with experiments on generative adversarial networks which demonstrates the benefits of the linear interpolation present in both RAPP and Lookahead.


Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence Rate

arXiv.org Machine Learning

Second-order optimization methods, such as cubic regularized Newton methods, are known for their rapid convergence rates; nevertheless, they become impractical in high-dimensional problems due to their substantial memory requirements and computational costs. One promising approach is to execute second-order updates within a lower-dimensional subspace, giving rise to subspace second-order methods. However, the majority of existing subspace second-order methods randomly select subspaces, consequently resulting in slower convergence rates depending on the problem's dimension $d$. In this paper, we introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of ${O}\left(\frac{1}{mk}+\frac{1}{k^2}\right)$ for solving convex optimization problems. Here, $m$ represents the subspace dimension, which can be significantly smaller than $d$. Instead of adopting a random subspace, our primary innovation involves performing the cubic regularized Newton update within the Krylov subspace associated with the Hessian and the gradient of the objective function. This result marks the first instance of a dimension-independent convergence rate for a subspace second-order method. Furthermore, when specific spectral conditions of the Hessian are met, our method recovers the convergence rate of a full-dimensional cubic regularized Newton method. Numerical experiments show our method converges faster than existing random subspace methods, especially for high-dimensional problems.


On the Convergence of Encoder-only Shallow Transformers

arXiv.org Artificial Intelligence

In this paper, we aim to build the global convergence theory of encoder-only shallow Transformers under a realistic setting from the perspective of architectures, initialization, and scaling under a finite width regime. The difficulty lies in how to tackle the softmax in self-attention mechanism, the core ingredient of Transformer. In particular, we diagnose the scaling scheme, carefully tackle the input/output of softmax, and prove that quadratic overparameterization is sufficient for global convergence of our shallow Transformers under commonly-used He/LeCun initialization in practice. Besides, neural tangent kernel (NTK) based analysis is also given, which facilitates a comprehensive comparison. Our theory demonstrates the separation on the importance of different scaling schemes and initialization. We believe our results can pave the way for a better understanding of modern Transformers, particularly on training dynamics.


Generalization Properties of NAS under Activation and Skip Connection Search

arXiv.org Artificial Intelligence

Neural Architecture Search (NAS) has fostered the automatic discovery of state-of-the-art neural architectures. Despite the progress achieved with NAS, so far there is little attention to theoretical guarantees on NAS. In this work, we study the generalization properties of NAS under a unifying framework enabling (deep) layer skip connection search and activation function search. To this end, we derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime using a certain search space including mixed activation functions, fully connected, and residual neural networks. We use the minimum eigenvalue to establish generalization error bounds of NAS in the stochastic gradient descent training. Importantly, we theoretically and experimentally show how the derived results can guide NAS to select the top-performing architectures, even in the case without training, leading to a train-free algorithm based on our theory. Accordingly, our numerical validation shed light on the design of computationally efficient methods for NAS. Our analysis is non-trivial due to the coupling of various architectures and activation functions under the unifying framework and has its own interest in providing the lower bound of the minimum eigenvalue of NTK in deep learning theory.