Plotting

 Cerny, Jakub


Grasper: A Generalist Pursuer for Pursuit-Evasion Problems

arXiv.org Artificial Intelligence

Pursuit-evasion games (PEGs) model interactions between a team of pursuers and an evader in graph-based environments such as urban street networks. Recent advancements have demonstrated the effectiveness of the pre-training and fine-tuning paradigm in PSRO to improve scalability in solving large-scale PEGs. However, these methods primarily focus on specific PEGs with fixed initial conditions that may vary substantially in real-world scenarios, which significantly hinders the applicability of the traditional methods. To address this issue, we introduce Grasper, a GeneRAlist purSuer for Pursuit-Evasion pRoblems, capable of efficiently generating pursuer policies tailored to specific PEGs. Our contributions are threefold: First, we present a novel architecture that offers high-quality solutions for diverse PEGs, comprising critical components such as (i) a graph neural network (GNN) to encode PEGs into hidden vectors, and (ii) a hypernetwork to generate pursuer policies based on these hidden vectors. As a second contribution, we develop an efficient three-stage training method involving (i) a pre-pretraining stage for learning robust PEG representations through self-supervised graph learning techniques like GraphMAE, (ii) a pre-training stage utilizing heuristic-guided multi-task pre-training (HMP) where heuristic-derived reference policies (e.g., through Dijkstra's algorithm) regularize pursuer policies, and (iii) a fine-tuning stage that employs PSRO to generate pursuer policies on designated PEGs. Finally, we perform extensive experiments on synthetic and real-world maps, showcasing Grasper's significant superiority over baselines in terms of solution quality and generalizability. We demonstrate that Grasper provides a versatile approach for solving pursuit-evasion problems across a broad range of scenarios, enabling practical deployment in real-world situations.


Offline Equilibrium Finding

arXiv.org Artificial Intelligence

Offline reinforcement learning (offline RL) is an emerging field that has recently begun gaining attention across various application domains due to its ability to learn strategies from earlier collected datasets. Offline RL proved very successful, paving a path to solving previously intractable real-world problems, and we aim to generalize this paradigm to a multiplayer-game setting. To this end, we introduce a problem of offline equilibrium finding (OEF) and construct multiple types of datasets across a wide range of games using several established methods. To solve the OEF problem, we design a model-based framework that can directly apply any online equilibrium finding algorithm to the OEF setting while making minimal changes. The three most prominent contemporary online equilibrium finding algorithms are adapted to the context of OEF, creating three model-based variants: OEF-PSRO and OEF-CFR, which generalize the widely-used algorithms PSRO and Deep CFR to compute Nash equilibria (NEs), and OEF-JPSRO, which generalizes the JPSRO to calculate (Coarse) Correlated equilibria ((C)CEs). We also combine the behavior cloning policy with the model-based policy to further improve the performance and provide a theoretical guarantee of the solution quality. Extensive experimental results demonstrate the superiority of our approach over offline RL algorithms and the importance of using model-based methods for OEF problems. We hope our work will contribute to advancing research in large-scale equilibrium finding.