Not enough data to create a plot.
Try a different view from the menu above.
Carlo Ciliberto
Localized Structured Prediction
Carlo Ciliberto, Francis Bach, Alessandro Rudi
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto
We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.
Localized Structured Prediction
Carlo Ciliberto, Francis Bach, Alessandro Rudi
Key to structured prediction is exploiting the problem's structure to simplify the learning process. A major challenge arises when data exhibit a local structure (i.e., are made "by parts") that can be leveraged to better approximate the relation between (parts of) the input and (parts of) the output. Recent literature on signal processing, and in particular computer vision, shows that capturing these aspects is indeed essential to achieve state-of-the-art performance. However, in this context algorithms are typically derived on a case-by-case basis. In this work we propose the first theoretical framework to deal with part-based data from a general perspective and study a novel method within the setting of statistical learning theory. Our analysis is novel in that it explicitly quantifies the benefits of leveraging the part-based structure of a problem on the learning rates of the proposed estimator.
A Consistent Regularization Approach for Structured Prediction
Carlo Ciliberto, Lorenzo Rosasco, Alessandro Rudi
We propose and analyze a regularization approach for structured prediction problems. We characterize a large class of loss functions that allows to naturally embed structured outputs in a linear space. We exploit this fact to design learning algorithms using a surrogate loss approach and regularization techniques. We prove universal consistency and finite sample bounds characterizing the generalization properties of the proposed method. Experimental results are provided to demonstrate the practical usefulness of the proposed approach.
Consistent Multitask Learning with Nonlinear Output Relations
Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil
Key to multitask learning is exploiting the relationships between different tasks in order to improve prediction performance. Most previous methods have focused on the case where tasks relations can be modeled as linear operators and regularization approaches can be used successfully. However, in practice assuming the tasks to be linearly related is often restrictive, and allowing for nonlinear structures is a challenge. In this paper, we tackle this issue by casting the problem within the framework of structured prediction. Our main contribution is a novel algorithm for learning multiple tasks which are related by a system of nonlinear equations that their joint outputs need to satisfy. We show that our algorithm can be efficiently implemented and study its generalization properties, proving universal consistency and learning rates. Our theoretical analysis highlights the benefits of non-linear multitask learning over learning the tasks independently. Encouraging experimental results show the benefits of the proposed method in practice.