Goto

Collaborating Authors

 Cao, Rongyu


Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

AAAI Conferences

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.


Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

arXiv.org Artificial Intelligence

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.


Mechanism-Aware Neural Machine for Dialogue Response Generation

AAAI Conferences

To the same utterance, people's responses in everyday dialogue may be diverse largely in terms of content semantics, speaking styles, communication intentions and so on. Previous generative conversational models ignore these 1-to-n relationships between a post to its diverse responses, and tend to return high-frequency but meaningless responses. In this study we propose a mechanism-aware neural machine for dialogue response generation. It assumes that there exists some latent responding mechanisms, each of which can generate different responses for a single input post. With this assumption we model different responding mechanisms as latent embeddings, and develop a encoder-diverter-decoder framework to train its modules in an end-to-end fashion. With the learned latent mechanisms, for the first time these decomposed modules can be used to encode the input into mechanism-aware context, and decode the responses with the controlled generation styles and topics. Finally, the experiments with human judgements, intuitive examples, detailed discussions demonstrate the quality and diversity of the generated responses with 9.80% increase of acceptable ratio over the best of six baseline methods.