Not enough data to create a plot.
Try a different view from the menu above.
Camporese, Guglielmo
Distilling Knowledge for Short-to-Long Term Trajectory Prediction
Das, Sourav, Camporese, Guglielmo, Ballan, Lamberto
Long-term trajectory forecasting is an important and challenging problem in the fields of computer vision, machine learning, and robotics. One fundamental difficulty stands in the evolution of the trajectory that becomes more and more uncertain and unpredictable as the time horizon grows, subsequently increasing the complexity of the problem. To overcome this issue, in this paper, we propose Di-Long, a new method that employs the distillation of a short-term trajectory model forecaster that guides a student network for long-term trajectory prediction during the training process. Given a total sequence length that comprehends the allowed observation for the student network and the complementary target sequence, we let the student and the teacher solve two different related tasks defined over the same full trajectory: the student observes a short sequence and predicts a long trajectory, whereas the teacher observes a longer sequence and predicts the remaining short target trajectory. The teacher's task is less uncertain, and we use its accurate predictions to guide the student through our knowledge distillation framework, reducing long-term future uncertainty. Our experiments show that our proposed Di-Long method is effective for long-term forecasting and achieves state-of-the-art performance on the Intersection Drone Dataset (inD) and the Stanford Drone Dataset (SDD).
Where are my Neighbors? Exploiting Patches Relations in Self-Supervised Vision Transformer
Camporese, Guglielmo, Izzo, Elena, Ballan, Lamberto
Vision Transformers (ViTs) enabled the use of the transformer architecture on vision tasks showing impressive performances when trained on big datasets. However, on relatively small datasets, ViTs are less accurate given their lack of inductive bias. To this end, we propose a simple but still effective Self-Supervised Learning (SSL) strategy to train ViTs, that without any external annotation or external data, can significantly improve the results. Specifically, we define a set of SSL tasks based on relations of image patches that the model has to solve before or jointly the supervised task. Differently from ViT, our RelViT model optimizes all the output tokens of the transformer encoder that are related to the image patches, thus exploiting more training signals at each training step. We investigated our methods on several image benchmarks finding that RelViT improves the SSL state-of-the-art methods by a large margin, especially on small datasets. Code is available at: https://github.com/guglielmocamporese/relvit.
SlowFast Rolling-Unrolling LSTMs for Action Anticipation in Egocentric Videos
Osman, Nada, Camporese, Guglielmo, Coscia, Pasquale, Ballan, Lamberto
Action anticipation in egocentric videos is a difficult task due to the inherently multi-modal nature of human actions. Additionally, some actions happen faster or slower than others depending on the actor or surrounding context which could vary each time and lead to different predictions. Based on this idea, we build upon RULSTM architecture, which is specifically designed for anticipating human actions, and propose a novel attention-based technique to evaluate, simultaneously, slow and fast features extracted from three different modalities, namely RGB, optical flow, and extracted objects. Two branches process information at different time scales, i.e., frame-rates, and several fusion schemes are considered to improve prediction accuracy. We perform extensive experiments on EpicKitchens-55 and EGTEA Gaze+ datasets, and demonstrate that our technique systematically improves the results of RULSTM architecture for Top-5 accuracy metric at different anticipation times.
Conditional Variational Capsule Network for Open Set Recognition
Guo, Yunrui, Camporese, Guglielmo, Yang, Wenjing, Sperduti, Alessandro, Ballan, Lamberto
In open set recognition, a classifier has to detect unknown classes that are not known at training time. In order to recognize new categories, the classifier has to project the input samples of known classes in very compact and separated regions of the features space for discriminating samples of unknown classes. Recently proposed Capsule Networks have shown to outperform alternatives in many fields, particularly in image recognition, however they have not been fully applied yet to open-set recognition. In capsule networks, scalar neurons are replaced by capsule vectors or matrices, whose entries represent different properties of objects. In our proposal, during training, capsules features of the same known class are encouraged to match a pre-defined gaussian, one for each class. To this end, we use the variational autoencoder framework, with a set of gaussian priors as the approximation for the posterior distribution. In this way, we are able to control the compactness of the features of the same class around the center of the gaussians, thus controlling the ability of the classifier in detecting samples from unknown classes. We conducted several experiments and ablation of our model, obtaining state of the art results on different datasets in the open set recognition and unknown detection tasks.